National Exam May, 2016

07-Elec-A1 Circuits

3 hours duration

NOTES:

- 1. <u>No questions to be asked</u>. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
- Candidates may use one of two calculators, a Casio or Sharp . <u>No programmable</u> <u>models</u> are allowed.
- 3. This is a <u>closed book</u> examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please **indicate in the front page of your answer book which questions you want to be marked.** If not indicated, only the first five questions as they appear in your answer book will be marked.
- 5. All questions are of equal value. Part marks will be given for right procedures.
- 6. **Some useful equations and transforms** are given in the last page of this question paper.

07-Elec-A1-May 2016

- Q1: (a) In the circuit shown in Figure-1, if the equivalent resistance at terminals A-B, $R_{AB} = 5\Omega$, calculate value of the unknown resistance, R. [10]
 - (b) If a 10V dc source is connected to terminals A-B, calculate the current I_R, and also calculate the power supplied by the 10V source to the whole circuit . [5+5]

Q2: For the circuit with a controlled voltage source shown in Figure-2, (a) calculate the Thevenin's equivalent circuit (V_{th} and R_{th}) at terminals a-b. (b) What should be the Load resistance, R_L which must be connected for maximum power dissipation? (c) calculate this maximum power dissipation in R_L.

Figure-2

07-Elec-A1-May 2016

Q3: For the Circuit shown in Figure-3, the switch was in position-a for a long time, at t = 0, it is moved to position-b. Calculate (i) $V_c(0^+)$ at $t = 0^+$, (ii) $V_c(t)$ at $t \ge 0$, and(iii) calculate $V_c(2)$ at t = 2 sec. [5+10+5]

Q4: In the circuit shown in Figure-4 below, $R_1 = 2\Omega$, $R_2 = 5 \Omega$, L = 2H, C=0.1F,

 $v_s(t) = 20 \cos (5t + 30^0) V$, and $i_s(t) = 15 \sin(5t + 20^0) A$.

(a) Write the mesh current equations in phasor for the directions of the mesh currents shown.

	[10]
(b) Solve the mesh currents I_1 and I_2 .	[5]
(c) Calculate the voltage $V_0(t)$, as shown in the diagram.	[5]

Page 4 of 6

[4]

[4]

[4]

07-Elec-A1-May 2016

Q5: In the circuit shown in Figure-5 below, the supply voltage is shown in RMS as $110 < 0^{\circ}$ V.

- (a) Calculate the supply current, I_s .
- (b) Draw the phasor diagram of V_s and I_s .
- (c) Calculate the power factor of operation of the source, V_s .
- (d) What the complex power S, Real Power P, and Reactive Power, Q of the source?

Q6: For the circuit shown in Figure-6, the switch was open and initial voltage on the capacitor, $V_C(0) = 4V$, and the initial current in the inductor, $i_L(0) = 1A$. At t = 0, the switch is closed.

- (a) Draw the Laplace equivalent circuit of the network at $t \ge 0$. [10]
- (b) If $V_s = 12V$, $R = 5\Omega$, L = 2 H, and C = 1F, calculate the voltage across the capacitor, Vc(t) at $t \ge 0$. [10]

Figure-6

<u>Appendix</u>

Some useful Laplace Transforms:

$\underline{f(t)} \rightarrow$	<u>F(s)</u>
Ku(t)	K /s
$\partial(t)$	1
t	$1/s^2$
$e^{-at} u(t)$	1 / (s+a)
sin wt .u(t)	$w / (s^2 + w^2)$
cos wt . u(t)	$s / (s^2 + w^2)$
$e^{-\alpha t}\sin\omega t$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}cos \omega t$	$\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$
$\frac{df(t)}{dt}$	$s F(s) - f(0^{-})$
$\frac{d^2 f(t)}{dt^2}$	$s^{2}F(s) - s f(0^{-}) - f^{1}(0^{-})$
$\int_{-\infty}^{t} f(q) dq$	$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$

07-Elec-A1-May 2016

Page 6 of 6

Star - Delta conversion:

