National Exam May, 2016

07-Elec-A1 Circuits

3 hours duration

NOTES:

1. No questions to be asked. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
2. Candidates may use one of two calculators, a Casio or Sharp . No programmable models are allowed.
3. This is a closed book examination.
4. Any five questions constitute a complete paper. Please indicate in the front page of your answer book which questions you want to be marked. If not indicated, only the first five questions as they appear in your answer book will be marked.
5. All questions are of equal value. Part marks will be given for right procedures.
6. Some useful equations and transforms are given in the last page of this question paper.

Q1: (a) In the circuit shown in Figure-1, if the equivalent resistance at terminals $A-B, R_{A B}=5 \Omega$, calculate value of the unknown resistance, R .
(b) If a 10 V dc source is connected to terminals $\mathrm{A}-\mathrm{B}$, calculate the current I_{R}, and also calculate the power supplied by the 10 V source to the whole circuit .

Figure-1
Q2: For the circuit with a controlled voltage source shown in Figure-2, (a) calculate the Thevenin's equivalent circuit ($\mathrm{V}_{\text {th }}$ and $\mathrm{R}_{\text {th }}$) at terminals a-b. (b) What should be the Load resistance, R_{L} which must be connected for maximum power dissipation? (c) calculate this maximum power dissipation in R_{L}.
$[10+4+6]$

Figure-2

Q3: For the Circuit shown in Figure-3, the switch was in position-a for a long time, at $\mathrm{t}=0$, it is moved to position-b. Calculate (i) $\mathrm{V}_{\mathrm{c}}\left(0^{+}\right)$at $\mathrm{t}=0^{+}$, (ii) $\mathrm{V}_{\mathrm{c}}(\mathrm{t})$ at $\mathrm{t} \geq 0$, and(iii) calculate $V_{c}(2)$ at $t=2 \mathrm{sec}$.

Figure-3

Q4: In the circuit shown in Figure-4 below, $\mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=5 \Omega, \mathrm{~L}=2 \mathrm{H}, \mathrm{C}=0.1 \mathrm{~F}$,

$$
v_{s}(t)=20 \cos \left(5 t+30^{\circ}\right) V, \text { and } i_{s}(t)=15 \sin \left(5 t+20^{\circ}\right) A
$$

(a) Write the mesh current equations in phasor for the directions of the mesh currents shown.
(b) Solve the mesh currents I_{1} and I_{2}.
(c) Calculate the voltage $\mathbf{V}_{0}(\mathbf{t})$, as shown in the diagram.

Figure-4

Q5: In the circuit shown in Figure-5 below, the supply voltage is shown in RMS as $110<0^{\circ} \mathrm{V}$.
(a) Calculate the supply current, \mathbf{I}_{s}. [4]
(b) Draw the phasor diagram of \mathbf{V}_{s} and $\mathbf{I}_{\mathbf{s}}$.
(c) Calculate the power factor of operation of the source, V_{s}.
(d) What the complex power S, Real Power P, and Reactive Power, Q of the source?

Figure-5
Q6: For the circuit shown in Figure-6, the switch was open and initial voltage on the capacitor, $\mathrm{V}_{\mathrm{C}}(0)=4 \mathrm{~V}$, and the initial current in the inductor, $\mathrm{i}_{\mathrm{L}}(0)=1 \mathrm{~A}$. At $\mathrm{t}=0$, the switch is closed.
(a) Draw the Laplace equivalent circuit of the network at $\mathrm{t} \geq 0$.
(b) If $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}=5 \Omega, \mathrm{~L}=2 \mathrm{H}$, and $\mathrm{C}=1 \mathrm{~F}$, calculate the voltage across the capacitor, $\mathrm{Vc}(\mathrm{t})$ at $\mathrm{t} \geq 0$.

Figure-6

Appendix

Some useful Laplace Transforms:

$\mathrm{f}(\mathrm{t})$	\rightarrow	$\mathrm{F}(\mathrm{s})$
$\mathrm{Ku}(\mathrm{t})$		K / s
$\partial(t)$		1
t		$1 / s^{2}$
$e^{-a t} u(t)$		$1 /(s+a)$
$\sin \mathrm{wt} . \mathrm{u}(\mathrm{t})$		$\mathrm{w} /\left(\mathrm{s}^{2}+\mathrm{w}^{2}\right)$
cos wt. $\mathrm{u}(\mathrm{t})$		$s /\left(s^{2}+w^{2}\right)$
$e^{-\alpha t} \sin \omega t$		$\frac{\omega}{(s+\alpha)^{2}+\omega^{2}}$
$e^{-\alpha t} \cos \omega t$		$\frac{(s+\alpha)}{(s+\alpha)^{2}+\omega^{2}}$
$\frac{d f(t)}{d t}$		$s \mathrm{~F}(\mathrm{~s})-\mathrm{f}\left(0^{-}\right)$
$\frac{d^{2} f(t)}{d t^{2}}$		$s^{2} F(s)-s f\left(0^{-}\right)-\mathrm{f}^{1}\left(0^{-}\right)$
$\int_{-\infty}^{t} f(q) d q$		$\frac{F(s)}{s}+\int_{-\infty}^{0} f(q) d q$

Star-Delta conversion:

$Z_{1}=\frac{Z_{b} \cdot Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{2}=\frac{Z_{a} \cdot Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{3}=\frac{Z_{a} \cdot Z_{b}}{Z_{a}+Z_{b}+Z_{c}}$
$Z_{a}=\frac{Z_{1} \cdot Z_{2}+Z_{2} \cdot Z_{3}+Z_{3} \cdot Z_{1}}{Z_{1}} \quad Z_{b}=\frac{Z_{1} \cdot Z_{2}+Z_{2} \cdot Z_{3}+Z_{3} \cdot Z_{1}}{Z_{2}} \quad Z_{c}=\frac{Z_{1} \cdot Z_{2}+Z_{2} \cdot Z_{3}+Z_{3} \cdot Z_{1}}{Z_{3}}$

