National Exams May 2018

16-Elec-B1, Digital Signal Processing

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a Closed Book exam.
 Candidates may use one of two calculators, the Casio or Sharp
 approved models. They are also entitled to one aid sheet with tables &
 formulas written both sides. No textbook excerpts or examples solved.
- 3. FIVE (5) questions constitute a complete exam.

 Clearly indicate your choice of any five of the six questions given otherwise the first five answers found will be considered your pick.
- 4. All questions are worth 12 points. See below for a detailed breakdown of the marking.

Marking Scheme

- 1. (a) 4, (b) 4, (c) 4, total = 12
- 2. (a) 5, (b) 1, (c) 1, (d) 2, (e) 3, total = 12
- 3. (a) 6, (b) 6, total = 12
- 4. (a) 8, (b) 4, total = 12
- 5. (a) 4, (b) 4, (c) 4, total = 12
- 6. (a) 3, (b) 9, total = 12

The number beside each part above indicates the points that part is worth

- 1.- The discrete-time system in the figure below is an ideal lowpass filter with cutoff frequency of $\pi/6$ rad/s.
 - (a) If $x_c(t)$ is bandlimited to 4kHz as indicated in the figure, determine the maximum value of T that will avoid aliasing in the C/D converter.
 - (b) If 1/T = 24 kHz, what is the cutoff frequency of the effective continuous-time filter?
 - (c) Sketch and label the Fourier transform of $y_r(t)$ using the sampling rate in part (b) and assuming the passband gain of the ideal lowpass discrete-time filter is 1.

2.- Two finite-length signals, $x_1[n]$ and $x_2[n]$, are sketched in the figure below.

Assume that $x_1[n]$ and $x_2[n]$ are zero outside of the interval shown in the figure.

Let $x_3[n]$ be the eight-point circular convolution of $x_1[n]$ with $x_2[n]$;

i.e., $x_3[n] = x_1[n] \otimes x_2[n]$.

5

10

(a) Determine $x_3[n]$ using the circular convolution theorem.

Let $x_4[n]$ be the linear convolution of $x_1[n]$ with $x_2[n]$.

- (b) What is the value of n for the first non-zero sample of $x_4[n]$?
- (c) What is the value of n for the last non-zero sample of $x_4[n]$?
- (d) Find and sketch $x_4[n]$.
- (e) Use $x_4[n]$ to find $x_3[n]$ and verify the result obtained in part (a).
- 3.- Consider a causal LTI system with impulse response h[n] and system function

$$H(z) = \frac{(1 - 2z^{-1})(1 - 4z^{-1})}{z\left(1 - \frac{1}{2}z^{-1}\right)}$$

- (a) Draw a direct form II flow graph for the system.
- (b) Draw the transposed form of the flow graph in part (a).

4.- The figure below shows a ten-point discrete-time sequence x[n]. Assume that x[n] = 0 outside the interval shown. The values of x[1] and x[4] are not known and represented by a and b. Note that these two values are not necessarily drawn to scale in the figure.

Let $X(e^{j\omega})$ be the DTFT of x[n] and Y[k] be samples of $X(e^{j\omega})$ every $\pi/2$; i.e.,

$$Y[k] = X(e^{j\omega})\big|_{\omega = (\pi/2)k,} \quad 0 \le k \le 3.$$

(a) The sequence y[n] is the 4-point inverse DFT of Y[k]. Check if the four-point sequence shown in the figure below could be y[n]. Justify.

- (b) Is it possible to find values for a and b that satisfy y[n] having some or all of the values shown in the figure? If so, give the values needed for a and b, otherwise explain.
- 5.- Consider an LTI system with input x[n] and output y[n] that satisfies the difference equation

$$y[n] - \frac{5}{2}y[n-1] + y[n-2] = x[n] - x[n-1].$$

- (a) Find the system function H(z).
- (b) Identify all possible regions of convergence (ROC) for H(z).
- (c) Determine the value of the impulse response at n = 0, h[0], for each of the possibilities listed in part (b).

6.- The design of an FIR filter using the windowing method is based on a desired frequency response $H_d(e^{j\omega})$ and its corresponding desired impulse response $h_d[n]$. More specifically, the resulting filter impulse response h[n] is found as:

$$h[n] = h_d[n] \cdot w[n] ,$$

where w[n] is a time window, e.g. Hamming, Hanning, etc, non-zero for n = 0, 1, 2, ..., M.

- (a) Indicate which of the following linear-phase FIR filter types can be based on each of the desired frequency responses given below (write 'YES' in the corresponding square).
- (b) Below each 'YES' justify your answer for that square based on the symmetry of the resulting h[n] and whether that type supports the frequency selective filter sought by $H_d(e^{j\omega})$.

$H_d(e^{j\omega})$	Type I	Type II	Type III	Type IV
$\begin{cases} e^{-j\frac{M}{2}\omega}, & \omega < \omega_c \\ 0, & \omega_c < \omega < \pi \end{cases}$				
$\begin{cases} 0, & \omega < \omega_c \\ e^{-j\frac{M}{2}\omega}, & \omega_c < \omega < \pi \end{cases}$				
$\begin{cases} -je^{-j\frac{M}{2}\omega}, & -\pi < \omega < -\omega_c \\ 0, & \omega < \omega_c \\ je^{-j\frac{M}{2}\omega}, & \omega_c < \omega < \pi \end{cases}$				
$\begin{cases} -je^{-j\frac{M}{2}\omega}, & -\omega_{c2} < \omega < -\omega_{c1} \\ je^{-j\frac{M}{2}\omega}, & \omega_{c1} < \omega < \omega_{c2} \\ 0, & elsewhere \end{cases}$				

Additional Information

(Not all of this information is necessarily required today!)

DTFT Synthesis Equation	DTFT Analysis Equation	
$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$	
Parseval's Theorem	N-point DFT	
$E = \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, W_N = e^{-j\frac{2\pi}{N}}$	
Z-transform of a sequence $x[n]$ $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$	Sinusoidal response of LTI systems, real h[n] $y[n] = \left H(e^{j\omega_0}) \right \cos \left(\omega_0 n + \sphericalangle H(e^{j\omega_0}) \right)$	

 TABLE 3.2
 SOME z-TRANSFORM PROPERTIES

Property Number	Section Reference	Sequence	Transform	ROC
		x[n]	X(z)	$R_{\mathcal{X}^{(i)}}$
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
2	3,4.2	$x[n-n_0]$	$z^{-\mu_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$-z \frac{dX(z)}{\sqrt{z}}$ $X^*(z^*)^z$	R_X
5	3.4.5	$x^*[n]$	$X^*(z^{\ell})^z$	R_{x}
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2,j}[X(z) - X^*(z^*)]$ $X^*(1/z^*)$	Contains R_x
8	3.4.6	$x^*[-n]$	$X^*(1/z^*)$	$1/R_x$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

Properties of the Discrete Fourier Transform

	Finite-Length Sequence (Length N)	N-point DFT (Length N)
1.	x[n]	X[k]
2.	$x_1[n], x_2[n]$	$X_1[k], X_2[k]$
3.	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
4.	X[n]	$Nx[((-k))_N]$
5.	$x[((n-m))_N]$	$W_N^{km}X[k]$
6.	$W_N^{-\ell n} x[n]$	$X[((k-\ell))_N]$
7.,	$\sum_{m=0}^{N-1} x_1(m)x_2[((n-m))_N]$	$X_1[k]X_2[k]$
8.	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1(\ell) X_2[((k-\ell))_N]$
9.	$x^*[n]$	$X^*[((-k))_N]$
10.	$x^*[((-n))_N]$	$X^*[k]$
11.	$\mathcal{R}e\{x[n]\}$	$X_{\text{ep}}[k] = \frac{1}{2} \{ X[((k))_N] + X^*[((-k))_N] \}$
12.	$j\mathcal{J}m\{x[n]\}$	$X_{\text{op}}[k] = \frac{1}{2} \{ X[((k))_N] - X^*[((-k))_N] \}$
13.	$x_{\text{ep}}[n] = \frac{1}{2} \{x[n] + x^*[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
14.	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x^*[((-n))_N] \}$	$j\mathcal{J}m\{X[k]\}$
	perties 15–17 apply only when $x[n]$ is real. Symmetry properties	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{J}m\{X[k]\} = -\mathcal{J}m\{X[((-k))_N]\} \\ X[k] = X[((-k))_N] \\ < \{X[k]\} = - < \{X[((-k))_N]\} \end{cases}$
16.	$x_{\text{ep}}[n] = \frac{1}{2} \{x[n] + x[((-n))_N]\}$	$\mathcal{R}e\{X[k]\}$
17.	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x[((-n))_N] \}$	$j\mathcal{J}m\{X[k]\}$

 TABLE 3.1
 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$6a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^n u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$		z > 0

<u>Initial Value Theorem:</u>

If x[n] is a causal sequence, *i.e.* x[n] = 0, $\forall n < 0$, then

$$x[0] = \lim_{z \to \infty} X(z)$$