# National Examinations - May 2015 

## 98-Civ-B7 Highway Engineering

## 3 Hour Duration

## NOTES

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
2. Any data required, but not given, can be assumed.
3. This is an "OPEN BOOK" examination. Any non-communicating calculator is permitted.
4. A total of five solutions is required. Only the first five as they appear in your answer book will be marked.
5. All questions are of equal value.

## Grading Scheme:

Question 1: (15+5) marks
Question 2: $(12+2+4+2)$ marks
Question 3: (20) marks
Question 4: (8+12) marks
Question 5: $(6+14)$ marks
Question 6: (20) marks
Question 7: (20) marks

1. (a) Given the end areas below, calculate the volumes of cut and fill between station $250+00$ and Station $251+50$ by the average end area method or the pyramidal volume as appropriate. The distance between the stations is $\mathbf{1 0 0} \mathbf{~ m}$.
(b) If the material shrinks 10 percent, how much excess cut or fill is there?

| Station | End area, $\mathrm{m}^{2}$ |  |
| :---: | :---: | :---: |
|  | Cut | Fill |
| $250+00$ |  | 60 |
| $250+50$ |  | 50 |
| $250+75$ | 0 | 25 |
| $251+00$ | 10 | 5 |
| $251+15$ | 15 | 0 |
| $251+50$ | 35 |  |

2. (a) Write an essay on transverse joints, dowel bars, longitudinal joints, expansion joints, construction joints and tie bars with reference to unreinforced jointed concrete pavements.
(b) Write a paragraph on pumping of joints in concrete pavements.
(c) Write a paragraph each on the four different forms of asphalt -cutback asphalts, asphalt emulsions, asphalt primers and modified asphalts.
(d) What are the advantages of adding tire rubber to asphalt paving mix?
3. Design a flexible pavement for a four lane divided highway, given the following data:

ESALs per day per direction $=900$
Lane distribution $=80 \%$ outside lane and $20 \%$ inside lane
Design period $=20$ years
Traffic growth factor $=3.5 \%$
Initial serviceability $=4.3$
Terminal serviceability $=2.5$
Reliability $=90 \%$
Overall standard deviation $=0.40$
Effective roadbed resilient modulus $=30 \mathrm{MPa}$
4. Given the following with respect to a horizintal curve:

$$
\begin{aligned}
& \mathrm{PI}=12+78.230 \\
& \mathrm{R}=500 \mathrm{~m} \\
& \Delta=86^{\circ}
\end{aligned}
$$

(a) Detrmine the stationing of PC and PT.
(b) Calculate the deflection angles at full stations to layout the curve in the field.
5. (a) A sample of wet aggregate weighed 310.0 N and its oven-dry weight is 280.0 N . If the absorption of the aggregate is $4.0 \%$, calculate the percent of free water in the original wet sample.
(b) A concrete trapezoidal channel has a bottom width of 6 m and side slopes of 1 vertical to 2 horizontal. The channel has a 3-percent longitudinal slope and is flowing at a constant depth of 3 m throughout its length. Using Manning's equation, calculate the volume of flow in cubic metres per day.
6. A $300-\mathrm{m}$ sag parabolic vertical curve has a PVC at station 2+600.000 and elevation 320.000 m . The initial grade is $-4.0 \%$ (minus four percent) and the final grade is $+1.0 \%$ (plus one percent).

Determine the stationing and elevation of PVI, PVT and the lowest point on the curve. Also calculate the stationing and elevation of the curve at $-3 \%,-2 \%,-1 \%$ and $0 \%$ grades.
7. The following information refers to a crest vertical curve:
$\mathrm{gl}=+4 \%$
$\mathrm{g} 2=-2 \%$
Design speed $=110 \mathrm{~km} / \mathrm{h}$
$\mathrm{K}=\mathrm{L} / \mathrm{A}=90 \mathrm{~m}$
Chainage of PVI is $0+400.000$ (Each station is 1000 m )
Elevation of PVI is 150.000
Compute the elevations of the high point and even $50-\mathrm{m}$ stations.

