National Exams May 2014 04-BS-1, Mathematics 3 hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
- 2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme:

- 1. (a) 10 marks, (b) 10 marks
- 2. 20 marks
- 3. 20 marks
- 4. (a) 8 marks, (b) 12 marks
- 5. 20 marks
- 6. 20 marks
- 7. 20 marks
- 8. 20 marks

- 1. For each of the following differential equations, find the general solution, y(x).
 - (a) $y'' + 9y = \sec 3x$
 - (b) $y'' y' 6y = 3x^2 + e^{-2x}$

Note that ' denotes differentiation with respect to x.

- 2. Find the maximum and minimum values of f(x, y, z) = x + y z over the sphere $x^2 + y^2 + z^2 = 1$.
- 3. Find the line tangent to the intersection of the surfaces

$$3x^2 + 2y^2 - 2z = 1$$

and

$$x^2 + y^2 + z^2 - 4y - 2z + 2 = 0$$

at the point (1, 1, 2).

- 4. Let $A = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix}$.
 - (a) Find the eigenvalues and eigenvectors of A.
 - (b) Solve the initial value problem

$$x' = 3x + y,$$
 $x(0) = 1,$
 $y' = -2x + y,$ $y(0) = 0.$

- 5. Evaluate the surface integral $\iint_S \mathbf{F} \cdot dS$ where $\mathbf{F}(x,y,z) = yz\mathbf{i} 2xy\mathbf{j} + 3z\mathbf{k}$ and S is the surface of the region bounded above by the paraboloid $z = 4 x^2 y^2$ and below by the plane z = 0.
- 6. Find the volume of the region bounded by the paraboloid $z = \frac{7}{4} + \frac{1}{4}(x^2 + y^2)$ and the plane z = 4 that lies outside the cone $z^2 - 4x^2 - 4y^2 = 0$.
- 7. Let C be the curve formed by the intersection of the cylinder $x^2 + y^2 = 9$ and the plane z = 1 + y 2x, travelled clockwise as viewed from the positive z-axis, and let v be the vector function $\mathbf{v} = 4z\mathbf{i} - 2y\mathbf{j} +$ 2yk. Evaluate the line integral $\oint_C \mathbf{v} \cdot d\mathbf{r}$.
- 8. Compute the response of the damped mass-spring system modelled by

$$y'' + 3y' + 2y = r(t),$$
 $y(0) = 0,$ $y'(0) = 0,$

where r is the square wave

$$r(t) = \begin{cases} 1, & 1 \le t < 2, \\ 0, & \text{otherwise,} \end{cases}$$

and 'denotes differentiation with respect to time.