National Exams - May 2019

16-Elec-A3, Signals and Communications

3 hours duration

Notes:

- 1) If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumption made.
- 2) This is a Closed-Book exam One of two calculators is permitted any Casio or Sharp approved model.
- 3) Answer all 5 questions.
- 4) All 5 questions are of equal value.

1. Consider a signal that is a periodic pulse train as in the following Figure where the duty cycle is 20%, and $T=100~\mu s$.

This signal is input to a first order (RC) low-pass filter with time constant RC = T, in cascade with an ideal low-pass filter with bandwidth B = 25 KHz (note cascade means that the output of the first filter is connected to the input of the second filter).

- a) Determine the Fourier series coefficients of x(t) if the amplitude of x(t) = 2.
- b) Determine the output of the ideal low-pass filter, y(t).
- c) Determine the average power of the signal y(t).
- 2. An audio signal m(t) is to be digitized using a non-uniform PCM encoding scheme. The bandwidth of the signal is 10 KHz, and the signal is to be quantized using a uniform quantization scheme for each of two ranges of the signal but with a different step size. Let $m_p = \max |m(t)|$ be the peak value of m(t), and let $m_s = m(kT)$ be a sample of m(t). If $|m_s| \le m_p/2$ then the quantization error should be less than 0.1% of the peak, m_p , otherwise the quantization error should be less than 0.4% of the peak.
- a) Determine a quantization scheme by listing all the threshold values; that is, specify the characteristics of the quantizer by giving the the output quantized level versus the input analog voltage level for each value of the sample.
- b) Assign a unique binary code to the quantized levels. What is the number of bits per sample?
- c) Determine the bit rate for the digitized speech signal assuming a 20% oversampling rate in order to facilitate the filtering during signal reconstruction.

- 3. Consider a message signal given by $m(t) = \cos(2\pi f_m t) + \sin(2\pi f_m t)$ where $f_m = 2$ KHz. This signal is to be modulated with a carrier with frequency 100 KHz.
- a) Assume DSB modulation, give an expression for the modulated signal in the time domain and plot it
- b) Give an expression for the spectrum of the modulated signal in a) and plot it.
- c) Assume AM modulation with a modulation index of 0.5 give an expression for the AM signal in the time domain and plot it.
- d) Give an expression for the spectrum of the modulated signal in c) and plot it.
- e) Assume upper sideband SSB modulation and give an expression for the modulated signal in the time domain and plot the spectrum.
- 4. An angle-modulated signal is given (in Volts) by

$$x(t) = \begin{cases} 10\cos(12000\pi t) & 0 < t \le 2\\ 10\cos(8000\pi t + 6000\pi) & 2 < t \le 4\\ 10\cos(10000\pi t) & \text{elsewhere} \end{cases}$$

The carrier frequency is 5 KHz.

- a) Assuming a frequency-modulated (FM) signal with frequency deviation constant $f_d = 1 \text{ KHz/Volt}$, determine the message signal m(t).
- b) Draw the block diagram for a generic FM demodulator not using a phase-lock loop.
- 5. A discrete time linear system is described by the following difference equation: $y(n) = a_1y(n-1) + a_2y(n-2) + x(n) + x(n-1)$, where x(n) is the input, y(n) is the output and $a_1 = a_2 = 1/2$.
- a) Give the transfer function for the system, and give the frequency response assuming a sampling frequency of 10 KHz. The expression for the frequency response must be accurate so that we can use it to create a plot.
- b) Find the impulse response of the system.
- c) Give a block diagram for the filter implementation that minimizes the number of delay elements.