NATIONAL EXAMS, MAY 2015

04-BS-9, Basic Electromagnetics

3 Hours Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. Candidates may use one of two calculators, the Casio or Sharp approved models. This is a closed book exam.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.
5. Aids: $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}, \quad e=1.6 \times 10^{-19} \mathrm{C}$
6. Four electrons each of charge $-e$ are located in four corners of a square of $10^{-10} \mathrm{~m}$ side. At the centre of the square are located four protons of charge $+e$.

Determine the magnitude and direction of electric field acting on one of the electrons.
2. The radius of an infinitely long, straight electron beam is $10^{-6} \mathrm{~m}$. The current carried by the beam is 10^{-6} amperes, the velocity of the electrons is $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$.

What are the magnitude and direction of electric field on the surface of the beam?
3. What are the magnitude and direction of magnetic flux density vector \vec{B} produced by one ampere current circulating in a horizontal circular loop of 1 m radius at a point 1 m above the centre of the loop? Viewed from above the current circulates clockwise.
4. Currents flow in two infinite, flat, horizontal sheets of 1 mm thickness and 1 mm apart. The current in the upper sheet flows north, that in the lower sheet flows south. Current density in both sheets is $2 \mathrm{~A} / \mathrm{mm}^{2}$.

What are the direction and magnitude of the flux density vector \vec{B} in the empty space between the sheets?
5. A horizontal circular wire loop is located in a uniform, vertical magnetic field of 0.1 teslas. The initial circumference of the loop is 30 cm and is being reduced (wound down) from 30 cm to zero at the rate of $1 \mathrm{~cm} / \mathrm{s}$.

What are the maximum and minimum values of EMF induced in the loop?
6. Electric energy of 1 joule is stored in an air-dielectric circular, parallel plate capacitor of $10 \mathrm{~cm}^{2}$ area and 1 mm separation between the plates.

What is the value of electric field intensity vector \vec{E} between the plates?
7. What is the mutual inductance of two coaxial circular loops located in two parallel planes 5 cm apart? The radius of one of loop is 5 cm , that of the other is 2 mm .
8. A pulse of light is generated at a point 10 m above a horizontal ground plane and detected at a point 30 m above the ground plane and 40 m horizontally away from the source point. The detected signal consists of a pulse travelling directly from the source to the detector and a pulse reflected from a horizontal mirror on the ground plane.

Determine:
(i) the location of the reflecting mirror on the ground plan and,
(ii) time delay between the arrivals of the pulses at the detector.

Assistance: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

