NATIONAL EXAMINATIONS MAY 2016

04-BS-5 ADVANCED MATHEMATICS

3 Hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumption made.
- 2. Candidates may use one of the approved Casio or Sharp calculators. This is a Closed Book Exam. However, candidates are permitted to bring **ONE** aid sheet (8.5"x11") written on both sides.
- 3. Any five (5) questions constitute a complete paper. Only the first five answers as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme

- 1. 20 marks
- 2. 20 marks
- 3. (a) 5 marks; (b) 9 marks; (c) 3 marks; (d) 3 marks
- 4. (A) 10 marks; (B) 10 marks
- 5. 20 marks
- 6. (A) 10 marks; (B) 10 marks
- 7. (a) 10 marks; (b) 10 marks

Page 1 of 4

1. Consider the following differential equation

$$\frac{d^2y}{dx^2} - 4xy = 0$$

Find two linearly independent solutions about the ordinary point x=0.

2. Find the Fourier series expansion of the periodic function f(x) of period $p=2\pi$.

$$f(x) = \begin{cases} \frac{\pi}{2} & -\pi < x \le -\frac{\pi}{2} \\ -x & -\frac{\pi}{2} < x \le 0 \end{cases}$$

$$x & 0 < x \le \frac{\pi}{2}$$

$$\frac{\pi}{2} & \frac{\pi}{2} < x \le \pi$$

3. Consider the following function where M and a are positive constants

$$f(x) = \begin{cases} \frac{Ma}{2}\cos(ax) & -\frac{\pi}{2a} \le x \le \frac{\pi}{2a} \\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the area bounded by f(x) and the x-axis. Graph f(x) against x for M=10, a=0.5 and a=1.
- (b) Find the Fourier transform $F(\omega)$ of f(x).
- (c) Graph $F(\omega)$ against ω for the same two values of a mentioned in (a). Explain what happens to f(x) and $F(\omega)$ when a tends to infinity.

Note:
$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-i\omega x) dx$$

4.(A) Prove that the coefficients α and β of the least-squares parabola $y = \alpha + \beta x^2$ that fits the set of n points (x_i, y_i) can be obtained as follows:

$$\alpha = \frac{(\sum_{i=1}^{n} x_{i}^{4})(\sum_{i=1}^{n} y_{i}) - (\sum_{i=1}^{n} x_{i}^{2})(\sum_{i=1}^{n} x_{i}^{2} y_{i})}{n(\sum_{i=1}^{n} x_{i}^{4}) - (\sum_{i=1}^{n} x_{i}^{2})^{2}}; \quad \beta = \frac{n(\sum_{i=1}^{n} x_{i}^{2} y_{i}) - (\sum_{i=1}^{n} x_{i}^{2})(\sum_{i=1}^{n} y_{i})}{n(\sum_{i=1}^{n} x_{i}^{4}) - (\sum_{i=1}^{n} x_{i}^{2})^{2}}$$

4.(B) Set up Newton's divided difference formula for the data tabulated below and derive the polynomial of highest possible degree:

X	-4	-3	0	0 2		4	
F(x)	-18	0	-6	0	24	70	

5. The following results were obtained in a certain experiment:

X	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
F(x)	10.00	63.75	70.00	86.25	80.00	68.75	60.00	61.25	90.00

Use Romberg's algorithm to obtain an approximation of the area bounded by the unknown curve represented by the table and the lines x = 0, x = 4 and the x-axis.

Note: The Romberg algorithm produces a triangular array of numbers, all of which are numerical estimates of the definite integral $\int_a^b f(x)dx$. The array is

denoted by the following notation:

$$R(1,1)$$
 $R(2,1)$
 $R(2,2)$
 $R(3,1)$
 $R(3,2)$
 $R(4,1)$
 $R(4,2)$
 $R(4,3)$
 $R(4,4)$
 $R(4,4)$

$$R(1,1) = \frac{H_1}{2} [f(a) + f(b)]$$

$$R(k,1) = \frac{1}{2} \left[R(k-1,1) + H_{k-1} \sum_{n=1}^{n=2^{k-2}} f(a + (2n-1)H_k) \right]; \qquad H_k = \frac{b-a}{2^{k-1}}$$

$$R(k,j) = R(k,j-1) + \frac{R(k,j-1) - R(k-1,j-1)}{4^{j-1} - 1}$$

6.(A) The equation $x^4 - 3x^3 - 5x^2 - 4x + 6 = 0$ has a root close to $x_0 = 4$. Use the following iterative formula twice to find a better approximation of this root. (Note: Carry seven digits in your calculations)

$$x_{i+1} = x_i - \frac{f(x_i)}{f^{(1)}(x_i)} - \frac{[f(x_i)]^2 f^{(2)}(x_i)}{2[f^{(1)}(x_i)]^3}$$

Hint: Let $f(x) = x^4 - 3x^3 - 5x^2 + 4x + 6$. Note that $f^{(1)}(x)$ and $f^{(2)}(x)$ denote the first and second derivative of f(x) respectively.

6.(B)The function $f(x) = x^4 - 3x^3 - 5x^2 - 4x + 6$ has a minimum close to $x_0 = 3$. Use any iterative method you deem appropriate to find the coordinates of this minimum. (Note: Carry seven digits in your calculations)

7. The symmetric, positive definite matrix $A = \begin{bmatrix} 4 & 10 & 8 \\ 10 & 29 & 26 \\ 8 & 26 & 34 \end{bmatrix}$ can be written

as the product L.L^T where L= $\begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$ and L^T is the transpose of L.

- (a) Find L and L^T .
- (b) Use the results obtained in (a) to solve the following system of three linear equations:

$$4x_1 + 10x_2 + 8x_3 = -4$$

 $10x_1 + 29x_2 + 26x_3 = -11$
 $8x_1 + 26x_2 + 34x_3 = -5$