# National Exams May 2018

# 16-Elec-A5, Electronics

#### 3 hours duration

#### Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**.
  One of two calculators is permitted any Casio or Sharp approved model.
- 3. Answer all **FIVE** (5) questions.
- 4. All guestions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

# **QUESTION (1)**

In the following circuit, determine the current, is flowing through and the voltage,  $v_{AB}$  across resistor  $R_5$ . (20 points)



Given:

 $R_1 = 1 \text{ k}\Omega$ 

 $R_2 = 1.2 \text{ k}\Omega$ 

 $R_3 = 9.1 \text{ k}\Omega$ 

 $R_4 = 11 \text{ k}\Omega$ 

 $R_5 = 2 k\Omega$ 

# **QUESTION (2)**



Given that all the op amps are ideal. The power supplies for op amps are  $\pm 15$ V.

Also,  $R = 10k\Omega$  and  $C = 10\mu$ F.

- (a) Derive an expression for the output voltage  $v_0$  as a function of  $v_1$  and  $v_2$ . (10 points)
- (b) Sketch the output waveform accurately in your answer book.

(10 points)

### **QUESTION (3)**



Assume that the BJT has the following characteristics:

$$\beta = 100$$

$$V_{EB(on)} = 0.7V$$

$$V_{EC(sat)} = 0.3V$$

$$V_A = \infty$$

Given:  $V_{CC} = 10V$ ,  $R_L = 10k\Omega$ , and  $R_E = 1k\Omega$ ,

a) Design this common emitter amplifier circuit to have the following specification:

DC bias current,  $I_E = 2\text{mA}$ , A mid-band voltage gain  $v_{out}/v_S = 100 \text{ V/V}$ Provide values for  $R_1$ ,  $R_2$ , and  $R_C$ .

(15 points)

b) What is the equivalent output resistance, Ro?

- (2 points)
- c) What is the maximum undistorted peak to peak output voltage swing at the output? (3 points)

# **QUESTION (4)**

Solve for the currents  $I_1$ ,  $I_2$ , and  $I_3$  in the following diode circuit.

(20 points)



Given:

All diodes are ideal with 0.6V forward drop

$$R_1 = R_2 = R_3 = 10 \text{ k}\Omega$$

### **QUESTION (5)**

The following is a single stage common source amplifier circuit.

Given:  $V_{TH} = 1 \text{ V}$ ,  $K = 4 \text{ mA/V}^2$ , and  $\lambda = 0$ 

- a) For a supply voltage  $V_{DD} = 15$  V, design the bias circuit such that  $I_D = 0.5$  mA,  $V_S = 3.5$  V, and  $V_D = 6$  V. Please specify the values for  $R_{G1}$ ,  $R_{G2}$ ,  $R_S$  and  $R_D$ . (10 points)
- b) Assuming that the equivalent input resistance  $R_{in} = 1.67 \text{ M}\Omega$ ,  $R_1 = 100 \text{ k}\Omega$ ,  $R_L = 200 \text{ k}\Omega$ , determine the overall small signal voltage gain  $v_1/v_{out}$ . (10 points)



Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[ (v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

triode region

$$i_{DS} = \frac{1}{2} K \left( v_{GS} - V_{TH} \right)^2 \left( 1 + \lambda v_{DS} \right)$$

saturation region