National Examination - Dec 2015
 04-BS-16: Discrete Mathematics Duration: 3 hours

Examination Type: Closed Book.
No aids allowed.

This exam paper contains 13 pages (including this one).
Answer $\mathbf{1 0}$ out of $\mathbf{1 2}$ questions. Ten questions constitute a full paper. Please clearly indicate which two questions you don't want marked by drawing a diagonal line across the page.
In case of doubt to any question, clearly state any assumptions made. One of two calculators is permitted any Casio or Sharp approved models.
\# 1 : \qquad / 10
\# 2 : \qquad / 10
\# 3: ___ $/ 10$
\#4: ___ $/ 10$
\# 5: ____ / 10
\# $6: \quad$ _ 10
\# 7 : \qquad / 10
\# 8: ____ $/ 10$
\# 9: _____ 10
\# 10: ___ 10
\# 11: \qquad / 10
\# 12: \qquad / 10

TOTAL: \qquad /100

Good Luck!

Question 1. [10 marks]

Part (a) [2 MARKS]
Rewrite the following without negation on qualifiers $\neg \exists x \neg \forall y \neg \exists z P(x, y, z)$

Part (b) [2 MARKS]
Write the sentence "A necessary condition for $P(x, y)$ to be true is that $x>y$ " as a logic expression.

Part (c) [3 MARKs]
Is $\exists x \forall y P(x, y) \rightarrow \forall x \exists y P(x, y)$ a tautology? Please either provide a proof or give a counterexample.

Part (d) [3 MARKS]

Consider the universe of discourse as positive intergers. Let $P_{n}(x, y, z)$ stand for $x^{n}+y^{n}=z^{n}$. Write the Fermat's Last Theorem as a logical proposition, i.e., the equation $x^{n}+y^{n}=z^{n}$ does not have positive integer solution for $n>2$.

Question 2. [10 MARKS]
Part (a) [5 MARKS]
Show that

$$
\sum_{s_{1}=0}^{1} \sum_{s_{2}=0}^{1} \cdots \sum_{s_{n}=0}^{1} \frac{1}{1^{s_{1}} 2^{s_{2}} \cdots n^{s_{n}}}=n+1
$$

Part (b) [5 MARKS]
Show that the sum of even numbers from $0,2, \cdots$ to $2 n$ is $n(n+1)$.

Question 3. [10 marks]

Consider a sequence recursively defined as follows: $a_{0}=2, a_{n+1}=a_{n}^{2}$.
Part (a) [2 MARKS]
Write down a closed-form expression for a_{n}.

Part (b) [3 MARKS]
Is $a_{n}=O\left(2^{n}\right)$? Is $a_{n}=O\left(n^{n}\right)$?

Part (c) [5 MARKS]

Prove that $a_{n}-1$ has at least n distinct prime divisors.

Question 4. [10 MARKS]
A 5-card poker hand is dealt from a 52-card deck. Find the probability of getting
a. Five cards of consecutive rank (2 is the smallest rank, A largest).
b. There is at least one card of each suite.
c. All five cards come from the same suite.
d. There is exactly one pair.
e. Full house: three cards of same rank, plus a pair of different rank.

Question 5. [10 MARKS]

In the world series, two teams play a sequence of up to 7 games. The first team that wins 4 games wins the series. Assume that the teams are evenly matched.

Part (a) [2 MARKS]
What is the probability that the series ends after 4 games?

Part (b) [3 MARKS]
What is the probability that the series ends after the 5 th game?

Part (c) [3 MARKS]
What is the probability that the series ends after the 6th game?

Part (d) [2 MARKS]
What is the probability that the series goes to the 7th game?

Question 6. [10 MARKs]

Part (a) [6 MARKS]
Suppose that we have 6 men and 4 women. How many different ways that
a. They can sit in a circular table so that all women sit next to each other? (clockwise and counterclockwise seatings are regarded as different)
b. A committee of 5 people can be formed so that at most one of John, Mary and Susan is on the committee?
c. A committee of 5 people can be formed with more women than men?

Part (b) [4 MARKS]
How many ways there are to re-arrange the letters in SCIENCE, if
a. there are no restrictions?
b. the C's are together

Question 7. [10 mARKs]

Part (a) [4 MARKS]
Consider the relation R defined on real numbers, where $(a, b) \in R$ if and only if $a-b$ is an integer. Show that R is an equivalence relation. Describe the equivalence classes.

Part (b) [6 MARKS]

Plot the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=\sin (x)+x$ over $x \in[-10,10]$. Is this function one-to-one? onto? Does it have an inverse? If not, specify the largest sets \mathcal{X} and \mathcal{Y} for which the function $f: \mathcal{X} \rightarrow \mathcal{Y}$ has an inverse.

Question 8. [10 marks]

Part (a) [6 MARKS]
Show that a Fibonacci sequence with the initial condition $a_{0}=0, a_{1}=1$, and $a_{n}=a_{n-1}+a_{n-2}$ can be written in closed-form as

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Part (b) [4 MARKS]
Prove that $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

Question 9. [10 MARKS]
Part (a) [2 MARKS]
Provide a definition of what it means by $f(n)$ is $O(g(n))$?

Part (b) [4 MARKS]
Insertion sort builds a sorted list by inserting one item to the list at a time. Describe how the algorithm works. What is the best-case, the worst-case, and the average run-time complexity of insertion sort? Please explain and provide adequate justification.

Part (c) [1 MARK]

Write down the name of a sorting algorithm that has better average run-time complexity than insertion sort.

Part (d) [3 MARKS]

Please order the following run-time complexity in big-O notation from slowest to fastest.

$$
O\left(n^{2}\right), O(n \sqrt{n}), O(\log (n)), O\left((\log (n))^{2}\right), O(\log (\log (n))), O\left(2^{n}\right), O\left(n^{2} \log (n)\right), O(1)
$$

Question 10. [10 MARKS]
Part (a) [2 MARKS]
Let G be a connected planar simple graph with e edges, and v vertices. Let f be the number of regions in the planar representation of G (including the outer region). What is the relation between e, f and v ?

Part (b) [2 MARKS]
A truncated tetrahedron has 4 hexagonal faces and 4 triangle faces. How many vertices and how many edges does it have?

Part (c) [3 MARKS]
Suppose that you use 20 equilateral triangles of same size as faces to construct a polyhedron, you will get a regular icosahedron. How many triangles meet around each vertex?

Part (d) [3 MARKS]

A truncated rhombic dodecahedron consists of square faces and hexagon faces. It has 48 edges and 32 vertices. How many faces are squares and how many hexagons?

Question 11. [10 marks]

Part (a) [2 MARKS]
What is an Euler circuit of a graph? Under what condition does a graph have a Euler circuit?

Part (b) [3 MARKS]

For what values of (m, n) does $K_{m, n}$, the complete bipartite graph with m vertices on one side and n vertices on the other, have a Euler circuit? Explain.

Part (c) [2 MARKS]
What is a Hamilton path of a graph?

Part (d) [3 MARKS]
Illustrate whether tetrahedron (four triangle faces), cube (six square faces), and octahedron (eight triangle faces) have a Hamilton path or not.

Question 12. [10 MARKS]

In some cultures, families prefer boys to girls. Suppose that in a society all families keep having more children until a boy is born (and they stop having children as soon as a boy is born). Assume that boys and girls are born with equal probability.

Part (a) [3 MARKS]
Give an expression for the average number of children per family in this society.

Part (b) [2 MARKS]
Give an expression for the average number of girls per family in this society.

Part (c) [1 MARK]
What is the average number of boys per family in this society?

Part (d) [3 MARKS]
Would this society have an imbalance between males and females in the population over the long run? Please explain why or why not.

$$
\text { Total Marks = } 100
$$

