# 04-CHEM-B1, TRANSPORT PHENOMENA 

DECEMBER 2016

## 3 hours duration

## NOTES

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. The examination is an open book exam. One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam.
3. Candidates may use any non-communicating calculator.
4. All problems are worth 25 points. One problem from each of sections A, B, and C must be attempted. A fourth problem from any section must also be attempted.
5. Only the first four questions as they appear in the answer book will be marked.
6. State all assumptions clearly.

## Section A: Fluid Mechanics

A1. Water at 300 K is flowing through a smooth pipe (internal diameter $=7 \mathrm{~cm}$ ) and $\Delta \mathrm{P} / \mathrm{L}$ is $125 \mathrm{~N} / \mathrm{m}^{2}$.m.
a) [15 points] Calculate the flow rate of water.
b) [10 points] Calculate the average velocity if the relative roughness of the pipe is 0.002 .

DATA:
Density of water $=997 \mathrm{~kg} / \mathrm{m}^{3}$
Viscosity of water $=8.57 \times 10^{-4} \mathrm{~Pa} . \mathrm{s}$

A2. Consider the flow of an incompressible fluid shown in the figure below.


Using the continuity equation and the equation for motion, obtain expressions for the velocity distribution and the volumetric flow rate.

## Section B: Heat Transfer

B1. Water flowing at a rate of $70 \mathrm{~kg} / \mathrm{min}$ is to be heated in a counterflow double pipe heat exchanger from $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Oil is used as the heating agent with inlet and temperatures of $120^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, respectively. For an overall heat transfer coefficient of $400 \mathrm{~W} / \mathrm{m}^{2}$, determine the following:
a) [5 points] Required heat exchanger surface area.
b) [ 12 points] Outlet water temperature, taking the same fluid inlet temperatures but with water flow rate of $50 \mathrm{~kg} / \mathrm{min}$.
c) [8 points] Required heat exchanger surface area for water flow rate of $50 \mathrm{~kg} / \mathrm{min}$.

DATA: $\quad$ Specific heat capacity of oil $=1.7 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ Specific heat capacity of water $=4.183 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$


Counterflow Heat Exchanger Performance: Effectiveness Factor ( $\varepsilon$ ) vs. Number of Transfer Units (NTU) for Various $\mathbf{C m i n}^{\mathbf{m}} / \mathbf{C}_{\text {max }}$ Ratios

B2. Heat is produced by nuclear fission within a fuel rod. The rate of heat produced per unit volume $(P)$ is a function of the radial position within the fuel rod given by the following equation:

$$
\mathbf{P}=\mathrm{P}_{0}\left[\mathbf{1}+\mathrm{b}\left(\mathrm{r} / \mathbf{R}_{1}\right)^{2}\right]
$$

Here $\mathrm{R}_{1}$ is the radius of the fuel rod, b is a constant, and $\mathrm{P}_{0}$ is the heat produced per unit volume at along the center of the fuel rod $(r=0)$. The fuel rod is encapped in the annular layer of cladding and cooled by heavy water at temperature $\mathrm{T}_{\mathrm{w}}$. The radius of the cladding is $\mathrm{R}_{\mathrm{C}}$, heat transfer coefficient at the cladding-heavy water interface is $\mathrm{h}_{\mathrm{L}}$, and the thermal conductivities of the fuel rod and cladding are $\mathrm{k}_{\mathrm{F}}$ and $\mathrm{k}_{\mathrm{C}}$, respectively. Obtain an expression for the maximum temperature within the fuel rod.

## Section C: Mass Transfer

C1. $0.00325 \mathrm{ft}^{3}$ of water spills on a surface and evaporates into still air at $74^{\circ} \mathrm{F}$ and 1 atm with absolutely humidity of 0.0019 lb water $/ \mathrm{lb}$ dry air. The saturation humidity at $74{ }^{\circ} \mathrm{F}$ is 0.0188 lb water/lb dry air. Evaporation occurs by the process of molecular diffusion through a gas film of thickness 0.19 inch. Calculate the time needed for the water spill to evaporate completely into the still air

DATA:
Diffusivity of water vapor in air at $78{ }^{\circ} \mathrm{F}$ and $1 \mathrm{~atm}=0.258 \mathrm{~cm}^{2} / \mathrm{s}$
Density of water $=62.4 \mathrm{lb} / \mathrm{ft}^{3}$

C2. Show that the general equation for molecular diffusion of a sphere in a stationary medium and in the absence of a chemical reaction is given by:

$$
\begin{aligned}
& \frac{1}{D} \frac{\partial C_{A}}{\partial t}=\left(\frac{\partial^{2} C_{A}}{\partial r^{2}}\right)+\frac{1}{r^{2}}\left(\frac{\partial^{2} C_{A}}{\partial \theta^{2}}\right)+\frac{2}{r}\left(\frac{\partial C_{A}}{\partial r}\right) \\
& +\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2} C_{A}}{\partial \varphi^{2}}\right)+\frac{\cot \theta}{r^{2}}\left(\frac{\partial C_{A}}{\partial \theta}\right)
\end{aligned}
$$

where $C_{A}$ is the concentration of the diffusing substance, $D$ is the molecular diffusivity, $t$ is the time, and $r, \theta$ and $\varphi$ and $\beta$ are spherical polar coordinates.

## APPENDIX A

Summary of the Conservation Equations

Table A. 1 The Continuity Equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+(\nabla \cdot \rho \vec{u})=0 \tag{1.1}
\end{equation*}
$$

Rectangular coordinates ( $x, y, z$ )

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}\left(\rho u_{x}\right)+\frac{\partial}{\partial y}\left(\rho u_{y}\right)+\frac{\partial}{\partial z}\left(\rho u_{z}\right)=0 \tag{1.1a}
\end{equation*}
$$

Cylindrical coordinates ( $r, \theta, z$ )

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(\rho r u_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\rho u_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho u_{z}\right)=0 \tag{1.1b}
\end{equation*}
$$

Spherical coordinates ( $\boldsymbol{r}, \boldsymbol{\theta}, \phi$ )

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\rho u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(\rho u_{\phi}\right)=0 \tag{1.1c}
\end{equation*}
$$

Table A. 2 The Navier-Stokes equations for Newtonian fluids of constant $\rho$ and $\mu$

$$
\begin{equation*}
\frac{\partial \vec{u}}{\partial t}+(\vec{u} \cdot \nabla) \bar{u}=-\frac{1}{\rho} \nabla P+\vec{g}+v\left(\nabla^{2} \vec{u}\right) \tag{A2}
\end{equation*}
$$

Rectangular coordinates ( $x, y, z$ )
$x$-component $\frac{\partial u_{x}}{\partial t}+u_{x} \frac{\partial u_{x}}{\partial x}+u_{y} \frac{\partial u_{x}}{\partial y}+u_{z} \frac{\partial u_{x}}{\partial z}=-\frac{1}{\rho} \frac{\partial P}{\partial x}+g_{x}+v\left(\frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{x}}{\partial y^{2}}+\frac{\partial^{2} u_{x}}{\partial z^{2}}\right)$
$y$-component $\frac{\partial u_{y}}{\partial t}+u_{x} \frac{\partial u_{y}}{\partial x}+u_{y} \frac{\partial u_{y}}{\partial y}+u_{z} \frac{\partial u_{y}}{\partial z}=-\frac{1}{\rho} \frac{\partial P}{\partial y}+g_{y}+v\left(\frac{\partial^{2} u_{y}}{\partial x^{2}}+\frac{\partial^{2} u_{y}}{\partial y^{2}}+\frac{\partial^{2} u_{y}}{\partial z^{2}}\right)$
$z$-component $\frac{\partial u_{z}}{\partial t}+u_{x} \frac{\partial u_{z}}{\partial x}+u_{y} \frac{\partial u_{z}}{\partial y}+u_{z} \frac{\partial u_{z}}{\partial z}=-\frac{1}{\rho} \frac{\partial P}{\partial z}+g_{z}+v\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right)$

## Cylindrical coordinates ( $r, \theta, z$ )

$$
\frac{\partial u_{r}}{\partial}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}+u_{z} \frac{\partial u_{r}}{\partial z}-\frac{u_{\theta}^{2}}{r}
$$

$r$-component

$$
\begin{align*}
& =-\frac{1}{\rho} \frac{\partial P}{\partial r}+g_{r}+v\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial^{2} u_{r}}{\partial z^{2}}\right]  \tag{A2d}\\
& \frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+u_{z} \frac{\partial u_{\theta}}{\partial z}+\frac{u_{r} u_{\theta}}{r}
\end{align*}
$$

$\theta$-component

$$
\begin{gather*}
=-\frac{1}{\rho r} \frac{\partial P}{\partial \theta}+g_{\theta}+v\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}+\frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right]  \tag{A2e}\\
\frac{\partial u_{z}}{\partial}+u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}
\end{gather*}
$$

$z$-component

$$
\begin{equation*}
=-\frac{1}{\rho} \frac{\partial P}{\partial z}+g_{z}+v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right] \tag{A2f}
\end{equation*}
$$

Spherical coordinates ( $r, \theta, \phi$ )

$$
\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}+\left(\frac{u_{\phi}}{r \sin \theta}\right) \frac{\partial u_{r}}{\partial \phi}-\frac{u_{\theta}^{2}}{r}-\frac{u_{\phi}^{2}}{r}=-\frac{1}{\rho} \frac{\partial P}{\partial r}+g_{r}
$$

$r$-component

$$
\begin{gather*}
+v\left[\frac{1}{r^{2}} \frac{\partial^{2}}{\partial r^{2}}\left(r^{2} u_{r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u_{r}}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u_{r}}{\partial \phi^{2}}\right] \\
\frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\left(\frac{u_{\phi}}{r \sin \theta}\right) \frac{\partial u_{\theta}}{\partial \phi}+\frac{u_{r} u_{\theta}}{r}-\frac{u_{\phi}^{2}}{r} \cot \theta=-\frac{1}{\rho r} \frac{\partial P}{\partial \theta}+g_{\theta} \tag{A2h}
\end{gather*}
$$

$\theta$-component $+v\left[\begin{array}{l}\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u_{\theta}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u_{\theta}}{\partial \phi^{2}} \\ +\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}-\frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}\end{array}\right]$

$$
\frac{\partial u_{\phi}}{\partial t}+u_{r} \frac{\partial u_{\phi}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\phi}}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r} u_{\phi}}{r}+\frac{u_{\theta} u_{\phi}}{r} \cot \theta=-\frac{1}{\rho r \sin \theta} \frac{\partial P}{\partial \phi}
$$

$\phi$-component

$$
+g_{\varphi}+v\left[\begin{array}{l}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u_{\phi}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(u_{\phi} \sin \theta\right)\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u_{\phi}}{\partial \phi^{2}}  \tag{A2i}\\
+\frac{2}{r^{2} \sin \theta} \frac{\partial u_{r}}{\partial \phi}+\frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}
\end{array}\right]
$$

Table A. 3 The Energy Equation for Incompressible Media

$$
\begin{equation*}
\rho c_{P}\left[\frac{\partial T}{\partial t}+(\vec{u} \cdot \nabla)(T)\right]=[\nabla \cdot k \nabla T]+\dot{T}_{G} \tag{A3}
\end{equation*}
$$

Rectangular coordinates $(x, y, z)$

$$
\begin{equation*}
\rho c_{P}\left[\frac{\partial T}{\partial t}+u_{x} \frac{\partial T}{\partial x}+u_{y} \frac{\partial T}{\partial y}+u_{z} \frac{\partial T}{\partial z}\right]=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{T}_{G} \tag{A3a}
\end{equation*}
$$

Cylindrical coordinates ( $\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{z}$ )

$$
\begin{equation*}
\rho c_{P}\left[\frac{\partial T}{\partial t}+u_{r} \frac{\partial T}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial T}{\partial \theta}+u_{z} \frac{\partial T}{\partial z}\right]=\frac{1}{r} \frac{\partial}{\partial r}\left(r k \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\left(k \frac{\partial T}{\partial \theta}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{T}_{G} \tag{A3b}
\end{equation*}
$$

Spherical coordinates ( $r, \boldsymbol{\theta}, \boldsymbol{\phi}$ )

$$
\begin{align*}
& \rho c_{P}\left[\frac{\partial T}{\partial t}+u_{r} \frac{\partial T}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial T}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial T}{\partial \phi}\right]= \\
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} k \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(k \sin \theta \frac{\partial T}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(k \frac{\partial T}{\partial \phi}\right)+\dot{T}_{G} \tag{A3c}
\end{align*}
$$

Table A4: The continuity equation for species $\boldsymbol{A}$ in terms of the molar flux

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}=-\left(\nabla \cdot \vec{N}_{A}\right)+\dot{R}_{A, G} \tag{4.}
\end{equation*}
$$

Rectangular coordinates $(x, y, z)$

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}=-\left(\frac{\partial\left[N_{A}\right]_{z}}{\partial x}+\frac{\partial\left[N_{A}\right]_{y}}{\partial y}+\frac{\partial\left[N_{A}\right]_{z}}{\partial z}\right)+\dot{R}_{A, G} \tag{4a}
\end{equation*}
$$

Cylindrical coordinates ( $r, \theta, z$ )

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}=-\left\{\frac{1}{r} \frac{\partial}{\partial r}\left[r N_{A}\right]_{r}+\frac{1}{r} \frac{\partial}{\partial \theta}\left[N_{A}\right]_{\theta}+\frac{\partial}{\partial z}\left[N_{A}\right]_{z}\right\}+\dot{R}_{A, G} \tag{4b}
\end{equation*}
$$

Spherical coordinates ( $r, \theta, \phi$ )

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}=-\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2}\left[N_{A}\right]_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\left[N_{A}\right]_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left[N_{A}\right]_{\phi}\right\}+\dot{R}_{A, G} \tag{4c}
\end{equation*}
$$

Table A.5: The continuity equation for species $A$

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}+(\vec{u} \cdot \nabla) C_{A}=D_{A} \nabla^{2} C_{A}+\dot{R}_{A, G} \tag{5}
\end{equation*}
$$

Rectangular coordinates $(x, y, z)$

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}+u_{x} \frac{\partial C_{A}}{\partial x}+u_{y} \frac{\partial C_{A}}{\partial y}+u_{z} \frac{\partial C_{A}}{\partial z}=\frac{\partial}{\partial x}\left(D \frac{\partial C_{A}}{\partial x}\right)+\frac{\partial}{\partial y}\left(D \frac{\partial C_{A}}{\partial y}\right)+\frac{\partial}{\partial z}\left(D \frac{\partial C_{A}}{\partial z}\right)+\dot{R}_{A, G} \tag{5a}
\end{equation*}
$$

Cylindrical coordinates ( $r, \theta, z$ )

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}+u_{r} \frac{\partial C_{A}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial C_{A}}{\partial \theta}+u_{z} \frac{\partial C_{A}}{\partial z}=\frac{1}{r} \frac{\partial}{\partial r}\left(r D \frac{\partial C_{A}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\left(D \frac{\partial C_{A}}{\partial \theta}\right)+\frac{\partial}{\partial z}\left(D \frac{\partial C_{A}}{\partial z}\right)+\dot{R}_{A, G} \tag{5b}
\end{equation*}
$$

Spherical coordinates ( $r, \theta, \phi$ )

$$
\begin{align*}
& \frac{\partial C_{A}}{\partial t}+u_{r} \frac{\partial C_{A}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial C_{A}}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial C_{A}}{\partial \phi}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} D \frac{\partial C_{A}}{\partial r}\right) \\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(D \sin \theta \frac{\partial C_{A}}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(D \frac{\partial C_{A}}{\partial \phi}\right)+\dot{R}_{A, G} \tag{5c}
\end{align*}
$$

