04-CHEM-B1, TRANSPORT PHENOMENA

DECEMBER 2016

3 hours duration

NOTES

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam.
- 3. Candidates may use any **non-communicating** calculator.
- 4. All problems are worth 25 points. **One problem** from **each** of sections A, B, and C must be attempted. A **fourth** problem from **any section** must also be attempted.
- 5. Only the first four questions as they appear in the answer book will be marked.
- 6. State all assumptions clearly.

Section A: Fluid Mechanics

- A1. Water at 300 K is flowing through a smooth pipe (internal diameter = 7 cm) and $\Delta P/L$ is 125 N/m².m.
 - a) [15 points] Calculate the flow rate of water.
 - b) [10 points] Calculate the average velocity if the relative roughness of the pipe is 0.002.

DATA:

Density of water = 997 kg/m³ Viscosity of water = 8.57×10^{-4} Pa.s

A2. Consider the flow of an incompressible fluid shown in the figure below.

Fluid at	pressure	Po	Cylinder of radius	insiđė R	Fluid	at	pressure	р _о
Pod of r	adius KR ith veloc.	~						

Using the continuity equation and the equation for motion, obtain expressions for the velocity distribution and the volumetric flow rate.

Section B: Heat Transfer

- **B1.** Water flowing at a rate of 70 kg/min is to be heated in a counterflow double pipe heat exchanger from 40 °C to 85 °C. Oil is used as the heating agent with inlet and temperatures of 120 °C and 85 °C, respectively. For an overall heat transfer coefficient of 400 W/m², determine the following:
 - a) [5 points] Required heat exchanger surface area.
 - b) [12 points] Outlet water temperature, taking the same fluid inlet temperatures but with water flow rate of 50 kg/min.
 - c) [8 points] Required heat exchanger surface area for water flow rate of 50 kg/min.

<u>DATA</u>: Specific heat capacity of oil = $1.7 \text{ kJ/kg}^{\circ}\text{C}$ Specific heat capacity of water = $4.183 \text{ kJ/kg}^{\circ}\text{C}$

<u>Counterflow Heat Exchanger Performance</u>: Effectiveness Factor (ε) vs. Number of Transfer Units (NTU) for Various C_{min}/C_{max} Ratios

B2. Heat is produced by nuclear fission within a fuel rod. The rate of heat produced per unit volume (P) is a function of the radial position within the fuel rod given by the following equation:

$P = P_0 [1 + b (r/R_1)^2]$

Here R_1 is the radius of the fuel rod, b is a constant, and P_0 is the heat produced per unit volume at along the center of the fuel rod (r = 0). The fuel rod is encapped in the annular layer of cladding and cooled by heavy water at temperature T_w. The radius of the cladding is R_c , heat transfer coefficient at the cladding-heavy water interface is h_L , and the thermal conductivities of the fuel rod and cladding are k_F and k_c , respectively. Obtain an expression for the maximum temperature within the fuel rod.

Section C: Mass Transfer

C1. 0.00325 ft³ of water spills on a surface and evaporates into still air at 74 °F and 1 atm with absolutely humidity of 0.0019 lb water/lb dry air. The saturation humidity at 74 °F is 0.0188 lb water/lb dry air. Evaporation occurs by the process of molecular diffusion through a gas film of thickness 0.19 inch. Calculate the time needed for the water spill to evaporate completely into the still air

DATA:

Diffusivity of water vapor in air at 78 °F and 1 atm = $0.258 \text{ cm}^2/\text{s}$ Density of water = 62.4 lb/ft^3

C2. Show that the general equation for molecular diffusion of a sphere in a stationary medium and in the absence of a chemical reaction is given by:

$$\frac{1}{D}\frac{\partial C_{A}}{\partial t} = \left(\frac{\partial^{2}C_{A}}{\partial r^{2}}\right) + \frac{1}{r^{2}}\left(\frac{\partial^{2}C_{A}}{\partial \theta^{2}}\right) + \frac{2}{r}\left(\frac{\partial C_{A}}{\partial r}\right) + \frac{1}{r^{2}\sin^{2}\theta}\left(\frac{\partial^{2}C_{A}}{\partial \varphi^{2}}\right) + \frac{\cot\theta}{r^{2}}\left(\frac{\partial C_{A}}{\partial \theta}\right)$$

where C_A is the concentration of the diffusing substance, D is the molecular diffusivity, t is the time, and r, θ and φ and β are spherical polar coordinates.

APPENDIX A

Summary of the Conservation Equations

Table A.1 The Continuity Equation

$\frac{\partial \rho}{\partial t} + \left(\nabla \cdot \rho \vec{u}\right) = 0$	(1.1)	

Rectangular coordinates (x, y, z) $\partial \rho$

° 33.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u_x) + \frac{\partial}{\partial y} (\rho u_y) + \frac{\partial}{\partial z} (\rho u_z) = 0$$
(1.1a)

Cylindrical coordinates
$$(r, \theta, z)$$

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r u_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho u_{\theta}) + \frac{\partial}{\partial z} (\rho u_z) = 0 \qquad (1.1b)$$

Spherical coordinates
$$(r, \theta, \phi)$$

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 u_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\rho u_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\rho u_\phi) = 0 \quad (1.1c)$$

Table A.2 The Navier-Stokes equations for Newtonian fluids of constant ho and μ

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = -\frac{1}{\rho} \nabla P + \vec{g} + \nu \left(\nabla^2 \vec{u} \right)$$
(A2)

$$\begin{array}{l} \text{Rectangular coordinates } (x, y, z) \\ x\text{-component} & \frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + g_x + v \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right) \\ y\text{-component} & \frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + g_y + v \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) \\ z\text{-component} & \frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial z} + g_z + v \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) \\ \end{array}$$

$$(A2b)$$

1.25

Cylindrical co	pordinates (r, θ, z)	
<i>r</i> -component	$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\theta}^2}{r}$ $= -\frac{1}{\rho} \frac{\partial P}{\partial r} + g_r + v \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (ru_r)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial^2 u_r}{\partial z^2} \right]$	(A2d)
θ-component	$\frac{\partial u_{\theta}}{\partial t} + u_{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + u_{z} \frac{\partial u_{\theta}}{\partial z} + \frac{u_{r}u_{\theta}}{r}$ $= -\frac{1}{\rho r} \frac{\partial P}{\partial \theta} + g_{\theta} + \nu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (ru_{\theta})}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} + \frac{\partial^{2} u_{\theta}}{\partial z^{2}} \right]$	(A2e)
<i>z</i> -component	$\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z}$ $= -\frac{1}{\rho} \frac{\partial P}{\partial z} + g_z + v \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2} \right]$	(A2f)
Spherical coo	rdinates (r, θ, ϕ)	
<i>r</i> -component	$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} + \left(\frac{u_{\phi}}{r\sin\theta}\right) \frac{\partial u_r}{\partial \phi} - \frac{u_{\theta}^2}{r} - \frac{u_{\phi}^2}{r} = -\frac{1}{\rho} \frac{\partial P}{\partial r} + g_r$ $+ \nu \left[\frac{1}{r^2} \frac{\partial^2}{\partial r^2} \left(r^2 u_r\right) + \frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial u_r}{\partial \theta}\right) + \frac{1}{r^2\sin^2\theta} \frac{\partial^2 u_r}{\partial \phi^2}\right]$	(A2g)
θ-component	$\frac{\partial u_{\theta}}{\partial t} + u_{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \left(\frac{u_{\phi}}{r\sin\theta}\right) \frac{\partial u_{\theta}}{\partial \phi} + \frac{u_{r}u_{\theta}}{r} - \frac{u_{\phi}^{2}}{r}\cot\theta = -\frac{1}{\rho r} \frac{\partial P}{\partial \theta} + g_{\theta}$ $+ v \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial u_{\theta}}{\partial r}\right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(u_{\theta}\sin\theta\right)\right) + \frac{1}{r^{2}} \frac{\partial^{2}u_{\theta}}{\partial \phi^{2}}\right]$ $+ \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} - \frac{2\cot\theta}{r^{2}\sin\theta} \frac{\partial u_{\phi}}{\partial \phi}$	(A2h)
\$\$component\$	$\begin{split} & \frac{\partial u_{\phi}}{\partial t} + u_{r} \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\phi}}{\partial \theta} + \frac{u_{\phi}}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{r} u_{\phi}}{r} + \frac{u_{\theta} u_{\phi}}{r} \cot \theta = -\frac{1}{\rho r \sin \theta} \frac{\partial P}{\partial \phi} \\ & + g_{\phi} + v \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial u_{\phi}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(u_{\phi} \sin \theta \right) \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} u_{\phi}}{\partial \phi^{2}} \\ & + \frac{2}{r^{2} \sin \theta} \frac{\partial u_{r}}{\partial \phi} + \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\theta}}{\partial \phi} \end{split}$	(A2i)

° 35.

° 24

$\mathbf{Table A.3 The Energy Equation for Incompressible Media} \\ \rho c_{p} \left[\frac{\partial T}{\partial t} + (\vec{u} \cdot \nabla)(T) \right] = \left[\nabla \cdot k \nabla T \right] + \dot{T}_{G}$ (A3) $\mathbf{Rectangular coordinates (x, y, z)} \\ \rho c_{p} \left[\frac{\partial T}{\partial t} + u_{x} \frac{\partial T}{\partial x} + u_{y} \frac{\partial T}{\partial y} + u_{z} \frac{\partial T}{\partial z} \right] = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{T}_{G}$ (A3a) $\mathbf{Cylindrical coordinates (r, \theta, z)} \\ \rho c_{p} \left[\frac{\partial T}{\partial t} + u_{r} \frac{\partial T}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial T}{\partial \theta} + u_{z} \frac{\partial T}{\partial z} \right] = \frac{1}{r} \frac{\partial}{\partial r} \left(rk \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(k \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{T}_{G}$ (A3b) $\mathbf{Spherical coordinates (r, \theta, \phi)} \\ \rho c_{p} \left[\frac{\partial T}{\partial t} + u_{r} \frac{\partial T}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial T}{\partial \theta} + \frac{u_{\theta}}{r \sin \theta} \frac{\partial T}{\partial \phi} \right] = \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(k \sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \dot{T}_{G}$ (A3c)

Table A4: The continuity equation for species A in terms of the molar flux

$$\frac{\partial C_A}{\partial t} = -\left(\nabla \cdot \vec{N}_A\right) + \dot{R}_{A,G} \tag{4.}$$

Rectangular coordinates (x, y, z)

$$\frac{\partial C_A}{\partial t} = -\left(\frac{\partial [N_A]_z}{\partial x} + \frac{\partial [N_A]_y}{\partial y} + \frac{\partial [N_A]_z}{\partial z}\right) + \dot{R}_{A,G}$$
(4a)

Cylindrical coordinates (r, θ, z)

$$\frac{\partial C_A}{\partial t} = -\left\{\frac{1}{r}\frac{\partial}{\partial r}[rN_A]_r + \frac{1}{r}\frac{\partial}{\partial \theta}[N_A]_\theta + \frac{\partial}{\partial z}[N_A]_z\right\} + \dot{R}_{A,G}$$
(4b)

Spherical coordinates
$$(r, \theta, \phi)$$

$$\frac{\partial C_A}{\partial t} = -\left\{\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2[N_A]_r\right) + \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}\left([N_A]_\theta\sin\theta\right) + \frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}[N_A]_\phi\right\} + \dot{R}_{A,G}$$
(4c)

$\frac{\partial C_A}{\partial t} + (\vec{u} \cdot \nabla)C_A = D_A \nabla^2 C_A + \dot{R}_{A,G}$	(5)
Rectangular coordinates (x, y, z)	
$\frac{\partial C_A}{\partial t} + u_x \frac{\partial C_A}{\partial x} + u_y \frac{\partial C_A}{\partial y} + u_z \frac{\partial C_A}{\partial z} = \frac{\partial}{\partial x} \left(D \frac{\partial C_A}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial C_A}{\partial y} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial C_A}{\partial z} \right) + \dot{R}_{A,G}$	(5a)
Cylindrical coordinates (r, θ, z)	
$\frac{\partial C_A}{\partial t} + u_r \frac{\partial C_A}{\partial r} + \frac{u_\theta}{r} \frac{\partial C_A}{\partial \theta} + u_z \frac{\partial C_A}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left(rD \frac{\partial C_A}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(D \frac{\partial C_A}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial C_A}{\partial z} \right) + \dot{R}_{A,G}$	(5b)
Spherical coordinates (r, θ, ϕ)	
$\frac{\partial C_A}{\partial t} + u_r \frac{\partial C_A}{\partial r} + \frac{u_\theta}{r} \frac{\partial C_A}{\partial \theta} + \frac{u_\phi}{r \sin \theta} \frac{\partial C_A}{\partial \phi} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D \frac{\partial C_A}{\partial r} \right)$	(50)
$+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(D\sin\theta\frac{\partial C_{A}}{\partial\theta}\right)+\frac{1}{r^{2}\sin^{2}\theta}\frac{\partial}{\partial\phi}\left(D\frac{\partial C_{A}}{\partial\phi}\right)+\dot{R}_{A,G}$	(5c)

 Table A.5: The continuity equation for species A

° 33.