National Exams December 2019

17-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK exam.
 Any non-communicating calculator is permitted.
- FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Marking Scheme

1.	20 marks total	(4 parts, 5 marks each)
2.	20 marks total	(4 parts, 5 marks each)
3.	20 marks total	(3 parts, a)7 marks, b)7 marks, c) 6 marks)
4.	20 marks total	(4 parts, 5 marks each)
5.	20 marks total	(3 parts, a) 7 marks, b) 6 marks, c) 7 marks)
6.	20 marks total	(4 parts, 5 marks each)
7.	20 marks total	(4 parts, 5 marks each)

Question 1 (20 marks)

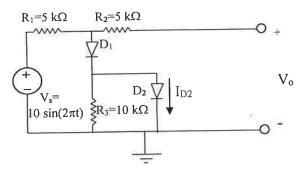


Figure 1. All diodes have a forward voltage drop V_D =0.7V.

The circuit shown in Figure 1 is in steady state:

- a) What maximum reverse voltage rating would you choose for the diodes?
- b) Which diode has the largest peak power dissipation? What power rating would you choose for this diode?
- c) Sketch V_s and V_o as a function of time, indicating peak voltages.
- d) Sketch current I_{D2} as a function of time, indicating peak values.

Question 2 (20 marks)

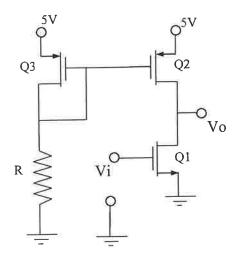


Figure 2 k_n '(W/L)=3 k_p '(W/L)=1 mA/V², V_{tn} = $|V_{tp}|$ =1.0V, V_A =80V assume λ =0.

For the circuit shown in Figure 2:

- a) Find a value for R that will result in $I_{D,Q3}=0.5$ mA?
- b) Draw a small signal equivalent model for the circuit.
- c) Find the input and output resistances of the circuit.
- d) What is the small signal AC gain of the circuit?

Question 3 (20 marks)

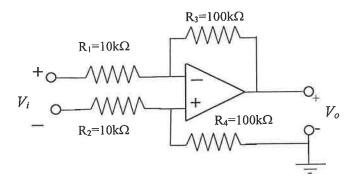


Figure 3. $+V_s=15V$, $-V_s=-15V$, $I_s=100mA$ from each supply, $V_{in}=1V@1kHz$.

For the circuit shown in Figure 3:

- a) Find voltage gain |A_v| in dB
- b) Draw an equivalent circuit for the amplifier including component values
- c) What is the maximum input possible without clipping of the output waveform?

Question 4(20 marks)

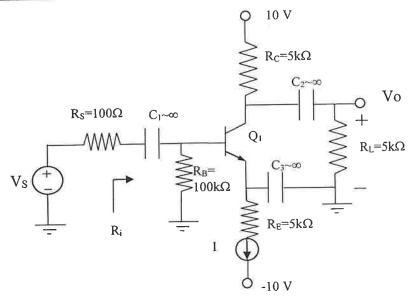


Figure 4. I=1mA, $\beta=100$, $V_A=100V$, $V_T=25mV$.

For the circuit shown in Figure 4:

- a) Find V_C, V_B and V_E.
- b) Draw a small signal equivalent circuit and find the model parameter values.
- c) Find the small signal input resistance Ri and output resistance Ro.
- d) Find the open circuit voltage gain for the amplifier and the loaded voltage gain.

Question 5 (20 marks)

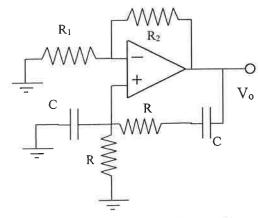


Figure 5. R=10k Ω , C=0.1 μ F

For the circuit shown in Figure 5:

- a) What is the condition for oscillation of the output?
- b) What are the frequency and amplitude of the output signal?
- c) Choose component values R_1 and R_2 to sustain oscillation.

Question 6 (20 marks)

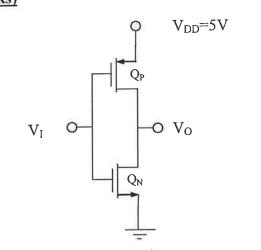


Figure 6 k_n '=50 μ A/V², k_p '=20 μ A/V², V_{tn} =- V_{tp} =1V, C_{ox} =1fF/ μ m², V_{DD} =5V.

- a) If the minimum gate length for this technology is 1 μ m, size Q_N and Q_P to obtain a symmetric transfer characteristic.
- b) Sketch the voltage transfer characteristic, indicate the region of operation of each transistor in each region of the characteristic.
- b) Estimate the maximum capacitance this circuit can drive with a propagation delay of less than 200 ps.
- d) Based on this inverter technology synthesize a circuit to execute $Y = \overline{AB}$.

Question 7 (20 marks)

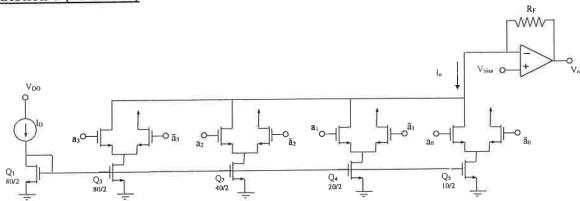


Figure 7. I_D =0.8mA, R_F =1 $k\Omega$, V_{DD} =5V, V_{bias} =2V V_t =1V, k'=40 μ A/V². Transistor W/L ratios are shown.

- a) What is a common name for the circuit shown in Figure 7? Briefly explain how it works.
- b) Calculate V_{GS} for Q₁. Calculate the drain currents for Q₂-Q₅.
- c) If a_3 - a_0 are connected to V_{DD} , find I_o . For each value of A_{in} =0000 to A_{in} =1111 determine the output V_o .
- d) What are the limitations of the application of this circuit?