National Exam May 2018

16-Elec-A1, Circuits

3 hours duration

NOTES:

- 1. No questions to be asked. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
- 2. One of two calculators is permitted any Casio or Sharp approved model. No programmable models are allowed.
- 3. This is a **closed book** examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please <u>indicate</u> in the front page of your answer book which questions you want to be marked. <u>If not indicated, only the first five questions as they appear in your answer book will be marked.</u>
- 5. All questions are of equal value. Part marks will be given for right procedures.
- 6. Some useful equations and transforms are given in the last page of this question paper.

Q1:(a) In the circuit shown in Figure-1, calculate the equivalent resistance at terminals a-b, Rab. [10]

(b) Calculate the current, I₀ as shown in the circuit. [10]

Figure-1

Q2: (a) Write the Node Voltage equations of the circuit shown in Figure-2. [9]

(b) Solve the Node Voltages. [6]

(c) Solve V₀ in the circuit. [5]

Figure-2

Q3: For the Circuit shown in Figure-3, the switch was initially closed for a long time.

At t=0, the switch is opened.

(a) Solve $V_c(0^+)$ i.e just after the switch was opened. [2] (b) Solve $\frac{dv_c}{dt}(0^+)$ [4] (c) Solve $V_c(t)$, $t \ge 0$ [10] (d) Sketch $V_c(t)$ for $t \ge 0$ [4]

Figure-3

Q4: (a) Transform the circuit in Figure-4 from time domain to phasor domain

[5]

(b) Write the mesh current equations of the circuit

[8]

(c) Solve V₀ in phasor, and in time domain, V(t)

[5+2]

Figure-4

[6]

Q5: (a) Calculate the Thevenin's Voltage, V_{th} and Thevenin's impedance, Z_{th} at the terminals **a-b** of the circuit shown in Figure-5. [6+6]

(b) What value of load impedance Z_L which can be connected at terminals **a-b** for maximum power dissipation in Z_L? [2]

(c) Calculate the maximum power, P_{max} which can be dissipated in Z_L .

Figure-5

Q6: In the circuit shown in Figure-6, input voltage of 15V dc was switched ON at t=0.

- (a) Convert the circuit its Laplace equivalent at t > 0, if $i_L(0^-) = 2A$ and $V_c(0^-) = 6V$. [5]
- (b) Find the capacitor voltage, V_c(s) in the frequency domain. [5]
- (c) Solve V_c (t) in the time domain. [10]

Figure-6

Appendix

Some useful Laplace Transforms:

<u>f(t)</u>	→	<u>F(s)</u>
Ku(t)		K/s
$\partial(t)$		1
t		1/s ²
e ^{-at} u(t)		1 / (s+a)
sin wt .u(t)		$w / (s^2 + w^2)$
cos wt . u(t)		$s / (s^2 + w^2)$
$e^{-\alpha t} \sin \omega t$		$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-lpha t}cos\omega t$		$\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$
$\frac{df(t)}{dt}$		$s F(s) - f(0^-)$
$\frac{d^2 f(t)}{dt^2}$		$s^2F(s) - s f(0^-) - f^1(0^-)$
$\int_{-\infty}^{\iota} f(q) dq$		$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$

Star - Delta conversion:

$$Z_1 = \frac{Z_b . Z_c}{Z_a + Z_b + Z_c}$$
 $Z_2 = \frac{Z_a . Z_c}{Z_a + Z_b + Z_c}$ $Z_3 = \frac{Z_a . Z_b}{Z_a + Z_b + Z_c}$

$$Z_2 = \frac{Z_a \cdot Z_c}{Z_a + Z_b + Z_c}$$

$$Z_3 = \frac{Z_a \cdot Z_b}{Z_a + Z_b + Z_c}$$

$$Z_a = \frac{Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1}{Z_1}$$

$$Z_b = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_2}{Z_2}$$

$$Z_a = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_1} \qquad Z_b = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_2} \qquad Z_c = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_3}$$