National Exam, December, 2017

16-Elec-A1 Circuits

3 hours duration

NOTES:

- No questions to be asked. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
- 2. One of two calculators is permitted; any Casio or Sharp approved models.
- 3. This is a **closed book** examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please <u>indicate</u> in the front page of your answer book which questions you want to be marked. <u>If not indicated, only the first five questions as they appear in your answer book will be marked.</u>
- 5. All questions are of equal value. Part marks will be given for right procedures.
- 6. **Some useful equations and transforms** are given in the last page of this question paper.

Q1:(a) In the circuit shown in Figure-1, calculate the equivalent resistance at terminals a-b, Rab. [10]

(b) Calculate the current, I_T shown in the circuit.

[4]

(c) Calculate the current, I_0 in the 3Ω resistance.

[6]

Figure-1

Q2: (a) Write the Node Voltage equations of the circuit shown in Figure-2.

[8]

(b) Solve the Node Voltages.

[8]

(c) What is the power dissipation in the 5Ω resistance?

[4]

Figure-2

Q3: For the Circuit shown in Figure-3, the switch was initially open for a long time.

At t=0, the switch is closed.

- (a) Solve V_C (0⁺) i.e just after the switch was closed. [4] (b) Solve V_C(t) at t>0, i.e after the switch is closed. [10]
- (c) Sketch $V_C(t)$ vs t (time). [6]

Figure-3

Q4: In the circuit shown in Figure-4 , V_m =100V, f=60 Hz, L1=L2=4mH, R1=R2=1 Ω

(a) Calculate $i_s(t)$ and $v_c(t)$

[5+5]

(b) Show the phasor diagram of $\overline{V_s}$, $\overline{I_s}$ and $\overline{V_c}$.

[4+2+4]

Figure-4

Q5: (a) Calculate the Thevenin's Voltage, V_{th} and Thevenin's impedance, Z_{th} at the terminals **a-b** of the circuit shown in Figure-5. [8+4]

(b) What value of load impedance Z_L which can be connected at terminals **a-b** for maximum power dissipation in Z_{L?}

(c) Calculate the maximum power, P_{max} which can be dissipated in Z_L . [6]

Figure-5

Q6: In the circuit shown in Figure-6, the switch was initially open. At t = 0, it is closed.

The initial current in the inductor, $i_L(o) = 0$, and the initial voltage in the capacitor, $v_c(0) = 5V$.

(a) Convert the circuit to its Laplace equivalent.

[8]

(b) Solve the capacitor voltage $V_c(t)$ from $V_c(s)$ in the time domain, at $t \ge 0$.

[12]

Figure-6

<u>Appendix</u>

Some useful Laplace Transforms:

<u>f(t)</u>	\rightarrow	$\mathbf{F}(\mathbf{s})$
Ku(t)		K/s
$\partial(t)$		1
t		$1/s^2$
e ^{-at} u(t)		1 / (s+a)
sin wt .u(t)		$w / (s^2 + w^2)$
cos wt . u(t)		$s / (s^2 + w^2)$
$e^{-\alpha t} \sin \omega t$		$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}cos \omega t$		$\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$
$\frac{df(t)}{dt}$		$s F(s) - f(0^{-})$
$\frac{d^2 f(t)}{dt^2}$		$s^2F(s) - s f(0^-) - f^1(0^-)$
$\int_{-\infty}^{\prime} f(q) dq$		$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$

Star - Delta conversion:

$$Z_1 = \frac{Z_b . Z_c}{Z_a + Z_b + Z_c}$$
 $Z_2 = \frac{Z_a . Z_c}{Z_a + Z_b + Z_c}$ $Z_3 = \frac{Z_a . Z_b}{Z_a + Z_b + Z_c}$

$$Z_2 = \frac{Z_a.Z_c}{Z_a + Z_b + Z_c}$$

$$Z_3 = \frac{Z_a \cdot Z_b}{Z_a + Z_b + Z_c}$$

$$Z_a = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_1} \qquad Z_b = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_2} \qquad Z_c = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_3}$$

$$Z_b = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_2}$$

$$Z_c = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_3}$$