NATIONAL EXAMS, DECEMBER 2013

04-BS-9, Basic Electromagnetics

3 Hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- Candidates may use one of two calculators, the Casio or Sharp approved models.
 This is a closed book exam.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.
- 5. Aids: $\varepsilon_0 = 8.85 \times 10^{-12} \, F/m$, $\mu_0 = 4\pi \times 10^{-7} \, H/m$, $e = 1.6 \times 10^{-19} \, C$

1. Electric field is produced by a charge distribution described below: positive point charge $2e \ (e = 1.6 \times 10^{-19} \, \text{C})$ surrounded by a spherical surface charge layer of radius $0.5 \times 10^{-10} \, \text{m}$ centered on the positive charge and carrying a total charge -e.

What is the electric potential with respect to infinity of a point separated from the positive charge by distance of 0.25×10^{-10} m?

2. Magnetic field is produced by a cylindrical surface layer current of 0.5 cm radius and 2 cm length. Total current in the layer is 1 mA.

What is the magnetic flux density B (in vacuum) on the axis of the cylinder in the middle thereof.

Aid:
$$\int du (1+u^2)^{-\frac{3}{2}} = u(1+u^2)^{-\frac{1}{2}}$$
.

3. Two horizontal infinite current sheet each 1 mm thick are separated by a 1 mm wide gap. The current in the upper sheet flows north, that in the lower one flows south. Current densities in the two sheets are 10^{-3} A/m².

Using Ampere's law and principle of superposition determine the value and direction of magnetic field intensity vector \vec{H} between the two sheets.

4. A uniform magnetic field of 10⁻⁵ teslas points in a horizontal direction. A circular wire loop of 10 turns and 10 cm² area located in vertical planes rotates at 3600 RPM about its vertical diameter.

What is RMS voltage induced in the loop?

5. Plate separation of a circular parallel plate capacitor of 5 cm radius is 1 mm. The space between the plates is filled with dielectric of 2.5 relative permittivity. Breakdown field of the dielectric is 10⁷ V/m.

Determine:

- (i) the capacitance of the capacitor and,
- (ii) the lowest upper bound of energy that can be stored in the capacitor.

6. A 3 cm long solenoid of 50 turns is tightly wound on 10 cm long core of circular cross-section of 5 mm diameter. The relative permittivity of the core material is 100.

What is the inductance of the system?

7. Magnetic field intensity \vec{H} of a 10 MHz electromagnetic wave propagating in vacuum is $(H, 0,0)\cos(\omega t - kz)$, with RMS value of $H = 50\mu\text{A/m}$. Using Maxwell's equations determine the RMS value of the electric field of the wave.

Aid: curl
$$(X,Y,Z) = \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}, \frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x}, \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right)$$
.

8. Two 1 km long transmission lines connected in parallel are delivering power from a 115 volt, zero impedance generator to a 10 ohm resistive load. The cross-sections of the conductors of the two transmission lines are circular of 1 mm² area. The resistivity of the conductor material of one of the lines is 1.7×10⁻⁸ ohm meters (copper), that of the other is 20×20⁻⁸ ohm meters (steel).

Calculate:

- (i) power delivered to the load and,
- (ii) power lost in the steel line.