NATIONAL EXAMS, DECEMBER 2016
 04-BS-9, BASIC ELECTROMAGNETICS
 3 HOURS DURATION

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. Candidates may use one of two calculators, the Casio or Sharp approved models. This is a closed book exam.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.
5. Aids: $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}, \quad e=1.6 \times 10^{-19} \mathrm{C}$
6. A positive point charge +2 e is surrounded by a sphere of uniformly distributed charge -e of radius 0.5 angstroms ($=5 \times 10^{-11} \mathrm{~m}$).

Calculate the value of electric field intensity at a point separated by a distance of 0.25 angstroms from the positive charge.
2. A positive point charge +3 e is located at the centre of a horizontal equilateral triangle of 1 angstrom $\left(10^{-10} \mathrm{~m}\right)$ side. Negative point charges -e are located in the vertices of the triangle.

What is the electric potential with respect to infinity of a point 1 angstrom above the centre of the triangle?
3. Plate separation of a parallel plate, air dielectric capacitor is 0.5 mm . Maximum allowable electric field in air is $10^{6} \mathrm{~V} / \mathrm{m}$. The capacitor stores 1 joule of electrostatic energy.

What is the minimum allowable area of the capacitor plates?
4. A horizontal, straight, infinitely long current of 1 A , circular cross-section of 1 mm radius and uniform current density flows north.

Plot the values of magnetic flux density vector B produced by the current as a function of distance from the axis of the current in the range of r from 0 to 2 mm and specify the direction of vector \vec{B} at points above the axis.
5. A horizontal circular current loop of 10 mA and $10^{-10} \mathrm{~m}$ radius produces magnetic flux density vector \vec{B}. Looking down from above the current circles clockwise.

What is the direction and magnitude of \vec{B} at a point $10^{-10} \mathrm{~m}$ above the centre of the loop?
6. A 1 m long horizontal metallic rod aligned in the north-south direction moves with $5 \mathrm{~m} / \mathrm{s}$ velocity in horizontal westerly direction. The rod is immersed in a uniform magnetic field of 10^{-5} teslas pointing up at 45° angle.

What is the value of induced electric potential of the norther tip of the rod with respect to the southern?
7. At a point in space with cartesian coordinates (x, y, z) the potential $V(x, y, z)$ of a charge distribution is $(x, y, z)=\left(1 / 4 \pi \varepsilon_{0}\right) p z / r^{3}$, with $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ and $p=1.610^{-29}$ Cm.

What are the components of the electric field at a point with coordinates

$$
(x, y, z)=(a, 0,0), a=10^{-10} \mathrm{~m} ?
$$

8. Light emitted from a 300 m high tower is reflected by a mirror located on the ground and observed on a 200 m high tower 600 m away. The mirror is located half-way between the two towers.

What is the angle of the mirror with respect to the ground?

