National Exams May 2015

07-Mec-A3, SYSTEM ANALYSIS AND CONTROL

3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. Candidates may use a Casio or Sharp approved calculator. This is a closed book exam. No aids other than semi-log graph papers are permitted.
3. Any four questions constitute a complete paper. Only the first four (4) questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Question 1:

Construct asymptotic Bode magnitude plots for the following transfer functions.
(a)

$$
4
$$

$$
s+2
$$

(b)

$(0.4 s+1)(s+1)$

Question 2:

(a) Calculate the unit step response of

$$
G(s)=\frac{1}{(s+2)^{2}(s+1)}
$$

(b) Calculate the unit step response of the system

$$
G(s)=\frac{54}{(2 s+6)\left(s^{2}+3 s+9\right)}
$$

Question 3:

Let Fig. 1 model a temperature control system with plant transfer function $G(s)=1 /[(s+1)(s+5)]$.
(a) With P control $G_{c}=K_{c}$, what is the system type number, and what is the gain?
(b) For $G_{c}=K_{c}$, find K_{c} for a damping ratio 0.5 and the corresponding steady-state error for a unit step input.

Figure 1

Question 4:

In the system with rate feedback shown in Fig. 2:
(a) Sketch the root locus and find K for a system damping ratio 0.5 for the dominating poles.
(b) Find the steady-state errors for step and ramp inputs for K of part (a).

Figure 2

Question 5:

Use the Routh-Hurwitz stability criterion to determine the stability of systems with the following characteristic equations.
(a) $s^{4}+10 s^{3}+33 s^{2}+46 s+30=0$
(b) $s^{4}+s^{3}+3 s^{2}+2 s+5=0$
(c) $s^{3}+2 s^{3}+3 s+6=0$

Question 6:

In Fig. 3 with $G(s)=1 /[(s+2)(s+10)]$:
(a) Calculate the unit step responses for $K=7$ and $K=20$.
(b) Verify the steady-state error values of these responses directly.
(c) Compare the responses on the basis of settling time and nature of the response.

Figure 3

Laplace Transform Table

Page 6 of 6

Laplace Transform Table (continued)

