04-CHEM-A4, CHEMICAL REACTOR ENGINEERING ### MAY 2015 Page 1 of 6 #### 3 hours Duration - 1. If doubt exists as to the interpretation of any question, please submit with your answer a clear statement of any assumption(s) you make. If possible, please underline or enclose any such statement in a box. - 2. This is an OPEN BOOK EXAM. You may bring to this exam - ➤ the official designated textbook by Fogler any edition annotated in margins, etc. as desired. No loose notes allowed. - > your own unit conversion tables and/or mathematical tables such as a CRC Handbook. - ➤ a non-communicating, programmable electronic calculator using a small operating guide. Please write the name and model of your calculator on the first inside left-hand sheet of the exam workbook. - 3. Graph paper will be provided. - 4. Any <u>four</u> questions constitute a complete paper and, unless you indicate otherwise, only the first four answers as they appear in your answer booklet will be marked. - 5. Each question is worth 20 points. Marking schemes are provided in brackets after each question. - 6. Technical content is the key ingredient in your answers. However, no credit will be given for deriving rate expressions, or standard formulas that are available in the textbook. Clear writing is essential, particularly when explanations are required. - 7. It will help the examiner if you could cite the origin of significant formula used e.g., Fogler, eq. (3-44). # Marking Scheme - Four questions comprise a complete exam. - 1. 20 points - 2. 20 points - 3. 20 points a) 10 points, b) 10 points - 4. 20 points - 5. 20 points Ethyl acetate $(CH_3COOC_2H_5)$ is to be manufactured by the esterification of acetic acid (CH_3COOH) with ethanol (C_2H_5OH) in an isothermal batch reactor as shown below: $$CH_3COOH(A) + C_2H_5OH(B) = CH_3COOC_2H_5(C) + H_2O(D)$$ A production rate of 10,000 kg/day of ethyl acetate is required. The reactor will be charged with a mixture containing 500 kg/m³ ethanol, 250 kg/m³ acetic acid, the remainder being water, and very small quantity of hydrochloric acid as a catalyst. The density of this mixture is 1045 kg/m³, which will be assumed constant throughout the reaction. The reaction is reversible with a rate equation given by $$r_A = k_f C_A C_B - k_r C_C C_D$$ At the operating temperature of 100 °C, the rate constants have the following values: $$k_f = 8 \times 10^{-6} \text{ m}^3/\text{kmol.s}$$ $$k_r = 2.7 \times 10^{-6} \text{ m}^3/\text{kmol.s}$$ The reaction mixture will be discharged when the conversion of acetic acid is 30%. A time of 30 minutes is required for discharging, cleaning, and recharging. Determine the volume of reactor required. The second order aqueous reaction $$A + B \rightarrow R + S$$ is run in a large tank reactor (V = 6 m^3) and for an equimolar food stream (C_{A0} = C_{B0}) conversion of reactants is 60%. Unfortunately, agitation in the reactor is rather inadequate and tracer tests of the flow within the reactor give the flow model shown below which includes a 4 m^3 dead zone: What size of mixed flow reactor will equal the performance of the unit shown? Calculations show that a plug flow reactor would give 99.9% conversion of reactant, which is in aqueous solution. However, the reactor has a residence time distribution as shown in the figure below: The variance for a symmetrical triangle with base "a" rotating about its centre of gravity is given by $\sigma^2 = a^2/24$ - (a) If $C_{A0} = 1000$, what outlet concentration can we expect in the reactor for a first order reaction? - (b) Repeat part (a) using the tanks-in-series model. Laboratory experiments on an irreversible, homogeneous gas-phase reaction $$2A + B \rightarrow 2C$$ have shown the reaction rate constant to be 1 x 10^5 L²/mol².s at 500 °C. Analysis of isothermal data from this reaction has indicated that a rate expression of the form $$-r_A = kC_A C_B^2$$ provides an adequate representation for the data at 500 °C and 1 atm total pressure. Calculate the volume of an isothermal, isobaric plug-glow reactor that would be required to process 6 L/s of a feed gas containing 25% A, 25 % B, and 50% inerts by volume for a fractional conversion of 90% of component A. Page 6 of 6 Kinetic experiments on the solid catalyzed reaction ## $A \rightarrow 3R$ are conducted at 8 atm and 700 $^{\circ}$ C in a mixed reactor 960 cm³ in volume and containing 1 gram of catalyst of diameter d_p = 3 mm. Feed consisting of pure A is introduced at various rates into the reactor and the partial pressure of A in the exit stream is measured for each feed rate as shown below: | Volumetric Feed Rate, V ₀ | Partial Pressure | |--------------------------------------|---------------------------------------| | | p _{A,out} /p _{A,in} | | (in liters per hour) | | | 100 | 0.8 | | 22 | 0.5 | | 4 | 0.2 | | 1 | 0.1 | | 0.6 | 0.05 | Find a rate equation to represent the rate of reaction on catalyst of this size. | Elements | |--------------| | Eler | | | | Table of the | | Periodic | | The F | | 18 | неіил
2
Не
4.00 | 10
10
Ne
20.18 | Argon 18 Ar 39.95 | Krypton | % 7 | 83.80 | Xenon
54 | Xe
131.29 | Radon
86 | Rn (222) | Unonoctium
118
Uuo
(294) | |----|--|--------------------------------------|--------------------------------------|------------------|------------------|-------|------------------|----------------------|----------------|---------------------|--| | | 17 | Fluorine 9 P Fluorine 19.00 | Chlorine 17 CI 35.45 | Bromine | ж
Б | 79.90 | lodine
53 | 1
126.90 | Astatine
85 | At (210) | Ununseptium
117
Uus
(294?) | | | 16 | Oxygen 8 | Suffur
16
S
32.07 | Selentum | Se 34 | 78.96 | Tellurium
52 | 1 e | Polonium
84 | Po (209) | Ununhertum
116
Uuh
(293) | | | 5 | Ntrogen 7 7 N 14.01 | Phosphorus 15 P 30.97 | Arsenic | 33
As | 74.92 | Antimony
51 | SD
121.76 | Bismuth 83 | Bi
208.98 | Ununpentium
115
Uup
(288) | | | 4 | Carbon 6 C C 12.01 | Silicon
14
Si
28.09 | Germanium | Ge 32 | 72.61 | E 02 € | Sn
118.71 | Lead
82 | Pb 207.20 | Ununquadium
114
Uuq
(289) | | 1 | 13 | Boron
5
B
10.81 | Aluminum
13
Al
26.98 | Gallium | ည် အ | 69.72 | Indium
49 | 114.82 | Thallium
81 | T
204.38 | Ununtrium
113
Uut
(284) | | | # | Avg. Mass | | 12
Zino | g
Z | 62.39 | Cadmium 48 | 112.41 | Mercury
80 | Hg 200.59 | Copernicium 112 Cn (285) | | | Atomic # | – Avg. | | 11
Copper | ည် အ | 63.55 | Silver
47 | Ag
107.87 | Gold
79 | Au
196.97 | Roentgenium
111
Rg
(280) | | | y o | 2 00 √ | | 10
Nickel | % ' Z | 58.69 | Palladium
46 | 7 a
106.42 | Platinum
78 | Pt 195.08 | Darmstactium 110 DS (281) | | | → Mercury | 200.59 | | Cobatt | გ ც | 58.93 | Rhodium
45 | Kn 102.91 | Iridium
77 | lr
192.22 | Meinenum
109
Mt
(276) | | | | | | & [6] | 7e | 55.85 | Ruthenium 44 | Ku
101.07 | Osmium
76 | 0s
190.23 | Hassium
108
Hs
(270) | | | Element name.
Symbol | | | 7
Manganese | Mn 25 | 54.94 | Technetium | (36) | Rhenium
75 | Re 186.21 | Bohrium
107
Bh
(272) | | | ⊞
⊕ | | | Chromium | ⊼ స | 52.00 | Molybdenum
42 | 95.94 | Tungsten 74 | W
183.84 | Seaborgium
106
Sg
(271) | | | netals
als
ni-metal) | | | Vanadium | S > | 50.94 | Niobium
41 | 92.91 | Tantalum
73 | Ta
180.95 | Dubnium
105
Db
(268) | | | Alkali metals
Alkaline earth metals
Transition metals
Other metals
Metalloids (semi-metal) | Nonmetals
Halogens
Noble gases | | Titanium | 3 II | 47.88 | Zirconium
40 | 91.22 | Hafinium
72 | Hf
178.49 | Rutherfordium
104
Rf
(267) | | | Met Talkk | N H N | | Scandium | Sc 2 | 44.96 | Yttrium
39 | 88.91 | Lutetium
71 | Lu 174.97 | 103
Lr
(262) | | | | | | | | | | | 57-70 | * | 89-102 | | | 7 | Beryllium
4
Be
9.01 | Magnesium 12 Mg 24.31 | Calgium | S & | 40.08 | Strontium
38 | 87.62 | Barium
56 | Ba
137.33 | Radium 88 88 Radium (226) | | - | Hydrogen 1 .01 | 13
2
Li
6.94 | Sodium 11 Na 22.99 | Potassium | <u>~</u> × | 39.10 | Rubidlum
37 | 85.47 | Cesium
55 | Cs
132.91 | Francium 87 Fr (223) | | | | | | | | | | | | | | | Ytterbium 70 Yb | 173.04 | 102
102
No
(259) | |---------------------------------------|--------|---------------------------------------| | т ^{ријим}
69
Тт | 168.93 | Mendelevium
101
Md
(258) | | Erbium
68
Fr | 167.26 | Fermium
100
Fm
(257) | | Holmum
67
Ho | 164.93 | Einsteinium
99
Es
(252) | | Dysprosium
66
Dy | 162.50 | Californium 98 Cf (251) | | Terblum
65
Tb | 158.93 | 97
97
BK
(247) | | Gadolinium
64
Gd | 157.25 | Cunum
96
Cm
(247) | | 63
Eu | 151.97 | Am (243) | | ₆₂
Sm | 150.36 | Plutonium
94
Pu
(244) | | 61
Pm | (145) | Neptunium
93
Np
(237) | | Neodymium
60
N | 144.24 | Uranium
92
U
238.03 | | Praseodymum
59
Pr | 140.91 | Protactinium 91 Pa 231.04 | | Cerum
S8
O | 140.12 | Thorium 90 Th Z32.04 | | 57
La | 138.91 | Actinium
89
A'C
(227) | | *lanthanides | | **actinides |