16-CHEM-A2, UNIT OPERATIONS and SEPARATION PROCESSES

MAY 2018

3 hours duration

NOTES

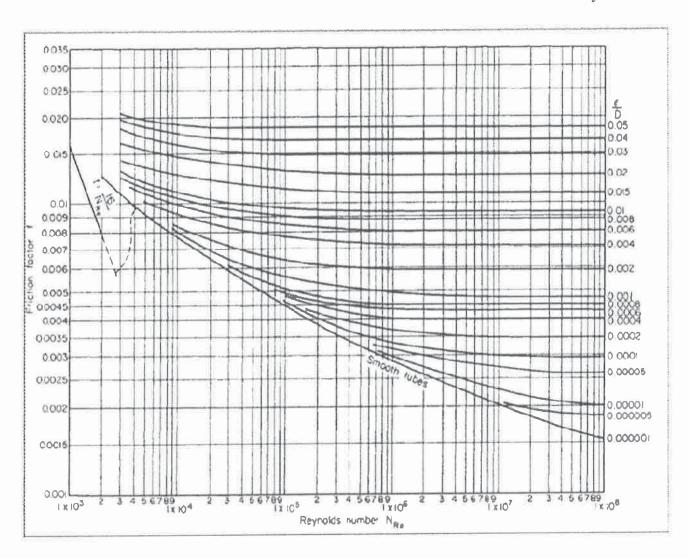
- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam.
- 3. Candidates may use any non-communicating scientific calculator.
- 4. All problems are worth 25 points. At least **two problems** from **each** of parts **A** and **B** must be attempted.
- 5. Only the first two questions as they appear in the answer book from each section will be marked.
- 6. State all assumptions clearly.

PART A: UNIT OPERATIONS

A1. A filter cake (thickness of 5.1 cm) was washed at a rate of 8.1 x 10⁻³ m³/m².min with pure water to remove soluble salts present in the voids. The composition of the cake is given below:

	Mass Fraction	Density, in kg/m ³
Inert Solids	0.4789	1420
Water	0.4641	1000
Soluble Salts	0.0570	1363

At the end of the washing period, the cake was analyzed and found to have mass fraction of 0.24% of salts on a moisture-free basis. Calculate the following:


- (a) [5 points] Average porosity of the cake.
- (b) [3 points] Volume fraction of salts on a moisture-free basis at the end of washing period.
- (c) [4 points] Average cake density.
- (d) [4 points] Mass of dry inert solid per unit area of filtration.
- (e) [6 points] Initial and final mass of solute per unit area of filtration.
- (f) [3 points] Void volume per unit area of filtration.

A2. Water at 60 °F is to be pumped from a reservoir to a storage tank on top of a building through an open pipe at a flow rate of 610 gal/min. The reservoir's water level is 10 ft above the pipe inlet and 200 ft below the water level in the tank. Both reservoir and tank are open to atmosphere. The piping system (525 ft long and a roughness parameter of 1.5 x 10⁻⁴ ft) has an inner diameter of 4 inches, and contains two gate valves and five 90° elbows. Calculate the pump power requirement (in HP or kW) if it is rated as 60% efficient.

DATA: Viscosity of water =
$$7.587 \times 10^{-4} \text{ lb}_m/\text{ft.s}$$

Density of water = $62.37 \text{ lb}_m/\text{ft}^3$

Fitting Loss Coefficient (Kf) Table

Fitting	K_{Γ}		
Globe valve, wide open	10.0		
Angle valve, wide open	5.0		
Gate valve, wide open	0.2		
Gate valve, half open	5.6		
Return bend	2.2		
Tee	1.8		
Elbow, 90°	0.9		
Elbow, 45°	0.4		

Fanning friction factor (f) vs. Reynolds number (Re) for pipes

Transactions of the American Society of Mechanical Engineers, vol. 66, p.672 (1944)

16-CHEM-A2, Unit Operations and Separation Processes May 2018

- A3. A spherical particle having a diameter of 9.3 x 10⁻³ inches and a specific gravity of 1.85 is placed on a horizontal screen. Air is blown through the screen vertically at a temperature of 20 oC and a pressure of 1 atm. Calculate the following:
 - (a) [10 points] Velocity required to just lift the particle.
 - (b) [3 points] Particle Reynolds number at the condition of part (a).
 - (c) [5 points] Drag force.
 - (d) [7 points] Drag coefficient C_D.

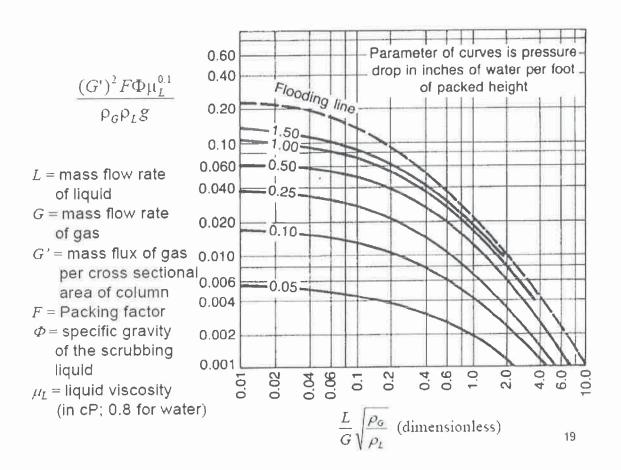
DATA:

Viscosity of air = 1.23×10^{-5} lb_m/ft.s

Density of air = $7.52 \times 10^{-2} \text{ lb}_{\text{m}}/\text{ft}^3$

Gravitational constant (g_c) = 32.2 lb_m.ft/lb_f.s²

PART B: SEPARATION PROCESSES


- **B1.** Air containing 5% by mole of ammonia (NH₃) is contacted with water in an absorption tower packed with 1-inch ceramic Raschig rings and operating at 1 atm (absolute) and 20 °C. The entering gas flow rate is 40 lbmol/hr and the entering water flow rate is 3200 lb_m/hr. 90% of the NH₃ is to be removed from air.
 - (a) [15 points] Find the diameter of the packed absorption tower operating at 70% of the flooding.
 - (b) [10 points] Determine the pressure drop per foot of packing.
 - DATA: Viscosity of water and ammonia-water solution (μ_L) = 1.0 cP

 Density of ammonia-air mixture at 0 °C (ρ_G) = 0.0791 lb_m/ft³

 Density of pure water and ammonia-water solution (ρ_L) = 62.3 lb_m/ft³

 Characteristic packing factor (F) = 155

 Specific gravity of water = 1.0

Sherwood Flooding Correlation for Packed Towers

[&]quot;Packed Tower Design and Applications" By Ralph E. Stigle, Jr., Gulf Publishing Company, Houston, Texas, 1996.

B2. Adsorption of papain (a cysteine protease enzyme present in papaya) from an aqueous solution on the solid matrix of activated charcoal was carried out in the laboratory and the following equilibrium data was obtained:

Concentration of Papain in Solution	Concentration of Papain in Adsorbent					
(in grams of papain/gram of solution)	(in grams of papain/gram of charcoal)					
9.295	0.3511					
18.667	0.6109					
28.754	0.6614					
38.278	1.1953					
48.355	1.2626					

- (a) [13 points] Evaluate the constants for Langmuir Isotherm.
- (b) [10 points] Evaluate the constants for Freundlich Isotherm.
- (c) [2 points] Which isotherm gives a better fit for the equilibrium data?

B3. 250 kg of an aqueous solution of pyridine containing 50% pyridine by weight is extracted in two stages using 200 kg chlorobenzene in each stage. The mutual solubility of water-chlorobenzene and the equilibrium distribution of pyridine between them (all in weight percentage) are given below:

0 99.95 0 0.08	0.05			
0 0.08				
I	99.92			
5.02 0.16	94.82			
11.05 88.28	0.67			
11.05 0.24	88.71 80.72 1,15 1.26			
18.90 0.38				
18.95 79.90				
24.10 74.28				
25.50 0.58	73.92			
28.60 69.15	2.25			
31.55 65.58	2.87			
35.05 61.00	3.95			
36.10 1.85	62.05			
40.60 53.00	6.40			
44.95 4.18	50.87			
49.00 37.80	13.20			
53.20 8.90	37.90			

- (a) [20 points] What will be the concentration of pyridine in the raffinate?
- (b) [5 points] Estimate the percentage of pyridine extracted.

The Periodic Table of the Elements

1																		18
Hydrogen 1 H 1,01	2		Alkali metals Alkaline carth metals Transition metals Other metals Metalloids (semi-metal) Nonmetals Halogens Noble gases						→ Mercury 80 ← Atomic #			13	14	15	16	17	Helium 2 He 4,00	
3 Li 6.94	Beryllum 4 Be 9,01								200.59 ← Avg. Mass			5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19,00	10 Ne 20,18	
Sodium 11 Na 22,99	Magnesium 12 Mg 24,31		3	4	6	6	7	8	9	10	11	12	Aluminum 13 Al 26,98	\$ilicon 14 \$i 28.09	Phosphorus 15 P 30 97	16 S 32,07	Chlorine 17 CI 35 45	Argon 18 Ar 39 95
Potassium 19 K 39_10	20 Ca 40,08	3	Scandium 21 SC 44.96	22 Ti 47.88	23 V 50.94	Chromium 24 Cr 52,00	Manganese 25 Mn 54,94	26 Fe 55.85	27 Co 58.93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,39	Galllum 31 Ga 69,72	32 Ge 72 61	Arsenic 33 As 74.92	Selenium 34 Se 78.96	35 Br 79 90	83 80
Rubidium 37 Rb 85 47	Strentium 38 Sr 87,62		Yttrium 39 Y 88,91	Zirconium 40 Zr 91,22	Noblum 41 Nb 92,91	Molybdenum 42 Mo 95,94	Technotism 43 TC (98)	Ruthenlum 44 Ru 101.07	Rhodlum 45 Rh 102.91	Palladium 46 Pd 106.42	47 47 Ag 107.87	Cadmium 48 Cd 112,41	tndlum 49 In 114.82	50 Sn 118,71	Antimony 51 Sb 121.76	Tellurium 52 Te 127.60	126,90	Xenon 54 Xe 131.29
Ceslum 55 Cs 132,91	Barlum 66 Ba 137,33	57-70 *	Luletium 71 Lu 174,97	Hafnlum 72 Hf 178,49	Tantalum 73 Ta 180,95	Tungsten 74 W 183,84	Rhenium 75 Re 186,21	76 Os 190,23	77 r 192.22	78 Pt 195.08	79 Au 196 97	80 Hg 200,59	Thefision 81 T1 204_38	82 Pb 207.20	83 Bi 208 98	Potentum 64 Po (209)	Astatina 85 At (210)	Raden 86 Rn (222)
Franckim 87 Fr (223)	Radium 88 Ra (226)	89-102 **	103 Lr (262)	104 Rf (267)	Dubnium 105 Db (268)	106 Sg (271)	Bohrlum 107 Bh (272)	108 Hs (270)	109 Mt (276)	110 Ds (281)	floariganium 111 Rg (280)	112 Cn (285)	113 Uut (284)	Ununquadium 114 Uuq (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294?)	118 Uuo (294)
	*lantha	anides	Lanthanum 57 La 138.91	58 Ce 140 12	Praseodymium. 59 Pr 140.91	Neodymium 80 Nd 144.24	Frametikan 61 Pm (145)	62 Sm 150.36	63 Eu 151.97	Gadolinium 64 Gd 157,25	Torbium 66 Tb 158,93	Dysprosium 66 Dy 162,50	Holmlum 67 Ho 164,93	68 Er 167,26	Trustum 69 Tm 168,93	70 Yb 173.04		
	**actinides		Actinium 89 AC (227)	Thorium 90 Th 232,04	Protectinium 91 Pa 231,04	Uranium 92 U 238.03	Neptunium 93 Np (237)	Piutenium 94 Pu (244)	Americium 96 Am (243)	Gurlum 96 Cm (247)	97 Bk (247)	Californium 98 Cf (251)	Einstelnium 99 Es (252)	Femilim 100 Fm (257)	Mendelevium 101 Md (258)	Nobelium 102 No (259)		

(