National Exams May 2013

07-Mec-A3, SYSTEM ANALYSIS AND CONTROLS

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Candidates may use one of two calculators, a Casio or Sharp approved calculator. This is a closed book exam. No aids other than semi-log graph papers are permitted.
- 3. Any four questions constitute a complete paper. Only the first four (4) questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Question 1:

A control system with unity feedback has an open-loop transfer function:

$$G(s) = \frac{K(s+12)}{s^2+25}$$

where K is a scalar gain.

Calculate the closed-loop denominator and find the range of values for K over which the closed-loop poles are real. With K = 24, find the step response of the closed-loop system and evaluate the steady-state error which follows a step response.

Question 2:

A unity feedback closed-loop system contains an open-loop transfer function:

$$G(s) = \frac{K}{s(s+25)}$$

Find the value of K which will provide a steady-state ramp error of 5%, i.e. $K_r = 20$. For this value of K obtain (a) the steady-state error to a unit step input, and the transient errors produced by (b) a unit step input, and (c) a unit ramp input.

Question 3:

A unity feedback control system has an open-loop transfer function:

$$G(s) = \frac{K(s+2)}{s(s+1)(s^2+2s+2)}$$

Find the range of values for K over which the closed-loop system is stable.

Question 4:

The open-loop transfer function of a unity feedback system is:

$$G(s) = \frac{K}{s(0.5s+1)(2s+1)}$$

Determine the range of values for K over which the closed-loop system will be stable.

Show that if the feedback is made equal to (s + 3) rather than unity, then the stability range will be increased.

Question 5:

Draw the root locus diagram for the system

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

and find the value of K which gives the complex closed-loop pole pair a damping ratio of $\zeta = 0.5$.

Question 6:

Given the open-loop transfer function

$$G(s) = \frac{3(s+1)}{s(s+a)}$$

By means of a Bode plot, find the value of α which results in a gain crossover frequency of $\omega = 100$ rad/s, when the system is connected within a unity feedback loop.

Laplace Transform Table

Lighter (Vindoria) (Hy)	Pine Junatur II 9
1	Unit-impulse function S(1)
1	Unit-step function u.(t)
<u>1</u>	Unit-ramp function t
ni J ^{ard}	t" (n = positive integer)
$\frac{1}{s+\alpha}$	£~
$\frac{1}{(s+\alpha)^3}$	te-w
$\frac{m!}{(s+\alpha)^{s+1}}$	r°e~ (n = positive integer)
$\frac{1}{(s+\alpha)(s+\beta)}$	$\frac{1}{\beta - \alpha} (e^{-\alpha} - e^{-\beta}) \ (\alpha \neq \beta)$
$\frac{s}{(s+\alpha)(s+\beta)}$	$\frac{1}{\beta - \alpha} (\beta e^{-\phi} - \alpha e^{-\omega}) \ (\alpha \neq \beta)$
$\frac{1}{\varepsilon(s+\alpha)}$	$\frac{1}{\alpha}(1-e^{-\alpha})$
$\frac{1}{s(s+\alpha)^2}$	$\frac{1}{\alpha^2}(1-e^{-\alpha}-\alpha i e^{-\alpha})$
$\frac{1}{s^3(s+\alpha)}$	$\frac{1}{\alpha^2}(\alpha t \sim 1 + e^{-\alpha t})$
$\frac{1}{t^3(s+\alpha)^3}$	$\frac{1}{\alpha^2} \left[i - \frac{1}{\alpha} + \left(i + \frac{2}{\alpha} \right) e^{-\frac{1}{\alpha}} \right]$

Laplace Transform Table (continued)

Epita manaom (69)	= intro Function (ij)
$\frac{s}{(s+\alpha)^{\lambda}}$	(1-an)e
<u>ω²</u> σ² + ω²	sin au _n ?
$\frac{s}{s^2+\omega_o^2}$	Cos ea _e t
$\frac{\omega_s^4}{s(s^1+\omega_s^4)}$	1 cos es _e t
$\frac{\omega_a^2(s+\alpha)}{s^2+\omega_a^2}$	$\omega_a \sqrt{\alpha^2 + \omega_a^2} \sin(\omega_a t + \theta)$ where $\theta = \tan^{-1}(\omega_a/\alpha)$
$\frac{\omega_{a}}{(z+\alpha)(z^{2}+\omega_{a}^{1})}$	$\frac{\omega_{a}}{\alpha^{1} + \omega_{a}^{1}} e^{-\omega t} + \frac{1}{\sqrt{\alpha^{1} + \omega_{a}^{2}}} \sin(\omega_{a}t - \theta)$ where $\theta = \tan^{-1}(\omega_{a}/\alpha)$
$\frac{\omega_a^1}{s^1 + 2\zeta \omega_a s + \omega_a^1}$	$-\frac{\omega_e}{\sqrt{1-\xi^2}}e^{-\frac{k}{2}J}\sin\omega_e\sqrt{1-\xi^2}t \qquad (\xi<1)$
$\frac{\omega_a^2}{s(s^2+2\zeta\omega_a s+\omega_a^2)}$	$I = \frac{1}{\sqrt{1 - \zeta^2}} e^{-\theta x t} \sin \left(\cos_n \sqrt{1 - \zeta^2} (t + \theta) \right)$ where $\theta = \cos^{-1} \zeta$ ($\zeta < 1$)
$\frac{s\omega_n^2}{s^3 + 2\zeta\omega_n s + \omega_n^2}$	$\frac{-\omega_{\alpha}^{\frac{1}{2}}}{\sqrt{1-\underline{\zeta}^{2}}}e^{-\delta \omega_{\alpha}^{2}}\sin(\omega_{\alpha}\sqrt{1-\underline{\zeta}^{2}}t-\theta)$ where $\theta=\cos^{-1}\zeta$ ($\zeta<1$)
$\frac{\omega_n^3(s+\alpha)}{s^2+2\zeta\omega_ns+\omega_n^3}$	$\omega_{d} \sqrt{\frac{\alpha^{1} - 2\alpha \zeta \omega_{d} + \omega_{d}^{2}}{1 - \zeta^{2}}} e^{-\beta \omega_{d}} \sin(\omega_{d} \sqrt{1 - \zeta^{2}} + \delta)$ where $\delta = \tan^{-1} \frac{\omega_{d} \sqrt{1 - \zeta^{2}}}{\alpha - \zeta \omega_{d}}$ ($\zeta < 1$)
$\frac{\omega_s^1}{s^2(s^3+2\zeta\omega_s s+\omega_s^1)}$	$1 - \frac{2\zeta}{\epsilon a_a} + \frac{1}{\alpha a_a^2 \sqrt{1 - \zeta^2}} e^{-i\omega t} \sin(\epsilon a_a \sqrt{1 - \zeta^2} \epsilon + \theta)$ where $\theta = \cos^{-1}(2\zeta^2 - 1)$ ($\zeta < 1$)

