16-CHEM-A1, PROCESS BALANCES and CHEMICAL THERMODYNAMICS ### **DECEMBER 2019** ### **Three Hours Duration** ### **NOTES:** - 1) If doubt exists as to the interpretation of any question, you are urged to submit a clear statement of any assumptions made along with the answer paper. - 2) Property data required to solve a given problem are provided in the problem statement or are available in the recommended texts. If you are unable to locate the required data, do not let this prevent you from solving the rest of the problem. Even in the absence of property data, you still have the opportunity to provide a solution methodology. - 3) This is an open-book exam. The suggested texts are: <u>Elementary Principles of Chemical Processes</u> by Felder and Rousseau (3rd edition). <u>Introduction to Chemical Engineering Thermodynamics</u> by Smith, Van Ness, and Abbott (7th edition). - 4) Any non-communicating calculator is permitted. - 5) The examination is in two parts Part A (Questions 1 to 3): Process Balances Part B (Questions 4 and 6): Chemical Thermodynamics - 6) Answer TWO questions from Part A and TWO questions from Part B. - 7) FOUR questions constitute a complete paper. - 8) Each question is of equal value. ## **PART A: PROCESS MASS and ENERGY BALANCES** 1) Consider the oxidation of toluene (C₆H₅CH₃) to benzaldehyde (C₆H₅CHO) given by the following reaction: $$C_6H_5CH_3(g) + O_2(g) \rightarrow C_6H_5CHO(g) + H_2O(g)$$ Calculate the standard heat of reaction for oxidation of toluene. ### DATA: Gross heat of combustion of liquid benzaldehyde at $18 \, ^{\circ}\text{C} = -841.3 \, \text{kcal/gmol}$ Normal boiling point of benzaldehyde = 179 °C Heat of vaporization of benzaldehyde at $179 \, {}^{\circ}\text{C} = 86.48 \, \text{cal/g}$ Specific heat capacity of liquid benzaldehyde = 0.428 cal/g °C Specific heat capacity of benzaldehyde vapor = 31 cal/mol °C Average molar heat capacity of liquid H₂O = 18 cal/mol °C Average molar heat capacity of CO₂ = 8.87 cal/mol °C Average molar heat capacity of O₂ = 7.0 cal/mol °C Standard heat of formation of H_2O vapor = -57.8 kcal/mol Standard heat of formation of toluene vapor = 11.95 kcal/mol Wood containing 45.9% carbon, 23.1% oxygen, 5.1% ash, and the rest containing moisture and hydrogen is burnt in a furnace. An Orsat analysis of the flue gas during a run shows 14.8% carbon dioxide, 1.66% carbon monoxide, 3.46% oxygen and 80.08% nitrogen. Determine the following: - a) Complete analysis of the wood used. - b) Ratio of fuel to air by weight. - c) Percentage of excess air used. - d) Composition of the flue gas. - 3) A grade of crude oil is heated to 237 °C and charged at 0.167 L/min to the flash zone of a laboratory distillation tower. The flash zone is at an absolute pressure of 1.1 atm. Assuming that the vapor and liquid are in equilibrium, calculate the following: - a) Percent vaporized - b) Amounts of the overhead and bottom streams ### DATA: Flash zone temperature = 483 K Latent heat of vaporization = 291 kJ/kg Density of vaporized crude = 0.75 kg/L Specific heat capacity of vaporized crude = 2.89 kJ/kg.K Density of unvaporized crude = 0.892 kg/L Specific heat capacity of unvaporized crude = 2.68 kJ/kg.K Density of feed crude = 0.85 kg/L Specific heat capacity of feed crude = 2.85 kJ/kg.K ### **PART B: CHEMICAL THERMODYNAMICS** 1) A chemical species A is known to decompose according to the $$A(g) \leftrightarrow B(g) + C(g)$$ A rigid container is filled with pure gaseous A at 300 K and 760 mmHg, and then heated. The pressure was observed to be 1114 mmHg at 400 K and 1584 mmHg at 500 K. Assuming ideal gas behavior and chemical equilibrium, estimate the pressure for a temperature of 600 K. 2) Calculate the fugacity of liquid hydrogen chloride at 277.4 K and 13.61 atm. DATA: Vapor pressure of pure HCl at 277.4 K = 28.81 atm Critical temperature of HCl = 324.68 K Critical pressure of HCl = 81.5 atm 3) A cleaning solution is to be manufactured from equal masses of acetone and dichloromethane, both at 298 K. If these components are mixed adiabatically at a pressure of 1 bar, with negligible stirring work, what is the temperature of the cleaning solution formed? #### DATA: Specific heat capacity of acetone at 1 bar and 298 K = 2.173 kJ/kg.K Specific heat capacity of dichloromethane at 1 bar and 298 K = 1.193 kJ/kg. K Heat of mixing of equal-mass solution at 1 bar and 293 K = 12.468 kJ/kg Heat of mixing of equal-mass solution at 1 bar and 298 K = 12.380 kJ/kg Heat of mixing of equal-mass solution at 1 bar and 303 K = 12.292 kJ/kg | (0 | |-----------------| | Elements | | 7 | | ne | | 1 | | <u> </u> | | Ш | | Ð | | of the | | _ | | | | P | | 9 | | Table | | | | 2 | | Q | | Periodic | | ā | | Ũ | | The | | ħ | | | | | | | | | | | _ | | _ | | - | | | | | | | |---|-------------------------|--------------------------|-------|-----------------|----|-------|------------------|---------------------|---|----------------|----------|--------|----------------------|-----|--------| | Hellum 2 2 4.00 | Ne 20.18 | Argon
18
Ar | 39.95 | Krypton
36 | 궃 | 83.80 | Xenon
54 | Xe
131.29 | | Radon
86 | R | (222) | Ununedium
118 | Uuo | (294) | | 17
Fluorine | 19.00 | Chlorino
17 | 35.45 | Bromine
35 | ğ | 79.90 | lodine
53 | 1
126.90 | | Asteline
85 | Αŧ | (210) | Ununseptium
117 | Uus | (2847) | | 16
Oxygen | O 16.00 | 30lfur
16
0 | 32.07 | Selenium
34 | Se | 78.96 | Tellurium
52 | Te
127.60 | | Polonium
84 | Ро | (209) | Ununhexium
116 | Unh | (293) | | 15 | N 14.01 | Phosphorus
15 | 30.97 | Arsenic
33 | As | 74.92 | Antimony
51 | Sb
121.76 | | Bismuth
83 | <u>m</u> | 208.98 | Ununpentium
115 | Uup | (288) | | 14 | C 12.01 | Silicon
14
Si | 28.09 | Germanum
32 | Ge | 72.61 | 50
20 | Sn
118.71 | | Lead
82 | Рь | 207.20 | Ununquadium
114 | Uuq | (585) | | Haron 13 | B
10.81 | Aluminum
13 | 26.98 | Gallium
31 | Ga | 69.72 | Indium
49 | ln
114.82 | | Thallium
81 | F | 204.38 | Ununtrium
113 | Uut | (584) | | # | Avg. Mass | | 12 | Zine
30 | Zn | 65.39 | Cadmium
48 | Cd
112.41 | | Mercury
80 | Hg | 200.59 | Copernicium
112 | S | (285) | | Atomic # | Avg. | | 7 | Copper
29 | Cr | 63.55 | Silver
47 | Ag
107.87 | | Gold
79 | Αn | 196.97 | Roanlgenium
111 | Rg | (280) | | oury
O D | .59 ^ | | 10 | Nickel
28 | z | 58.69 | Palladium
46 | Pd 106.42 | | Platinum
78 | ፈ | 195.08 | Darmstadtlum
110 | Ds | (281) | | → Mercury
> 80 ← | 200 | | თ | Cobalt
27 | ပိ | 58.93 | Rhodium
45 | Rh | | Iridium
77 | 느 | 192.22 | Meltnerium
109 | Μţ | (276) | | ame – | | • | ω | lron
26 | Fe | 55.85 | Ruthenlum
44 | Ru
101.07 | | Osmium
76 | Os | 190.23 | Hassium
108 | Hs | (270) | | ment name.
Symbol | | | 7 | Manganese
25 | Mn | 54.94 | Technetium
43 | 1 c | | Rhenium
75 | Re | 186.21 | Bohnum
107 | Bh | (272) | | <u>ө</u> | | | 9 | Chromium
24 | င် | 52.00 | Molybdenum
42 | Mo | | Tungsten
74 | > | 183.84 | Seaborgium
106 | Sg | (271) | | netals
als
ni-metal) | | | Ŋ | Vanadium
23 | > | 50.94 | Niobium
41 | Nb
92.91 | | Tentalum
73 | Та | 180.95 | Dubnium
105 | | | | Alkali metals
Alkaline earth metals
Transition metals
Other metals
Metalloids (semi-metal)
Nonmetals | Halogens
Noble gases | | 4 | Titanium
22 | ï | 47.88 | Zirconium
40 | Zr
91.22 | | Hafnium
72 | Ŧ | 178.49 | Rutherfordium
104 | 꿃 | (267) | | Alka
Alka
Trar
Oth
Net | No. | | က | Scandium
21 | Sc | 44.96 | Yllrium
39 | ≻88.91 | | Lutellum
71 | Lu | 174.97 | Lawrencium
103 | בֿ | (262) | | | | | | | | | | | | 13 | * | | 80.402 | ** | | | 2
Beryllum | Be
9.01 | Magnesium
12 | 24.31 | Calcium
20 | Ca | 40.08 | Stronium
38 | Sr
87.62 | | Barium
56 | Ba | 137.33 | Radium
88 | Ra | (226) | | Hydrogen 1 01 | 3
6.94 | Spdium
11 | 22.99 | Potassium
19 | × | 39.10 | Rubidium
37 | Rb | | Cestum
55 | Cs | 132.91 | Francium
87 | Ţ | (223) | | | | | | | | | | | | | | |)(E) | | | | *lanthanides | 57
La
138.91 | Cerrum
58
Ce
140.12 | Presecdymium 59 Pr 140.91 | Neodymium
60
Nd
144.24 | Promethum
61
Pm
(145) | Samarlum
62
Sm
150.36 | Europium
63
Eu
151.97 | Gedolinium
64
Gd
157.25 | Tarblum 65 | Dy
162.50 | Holmium
67
Ho
164.93 | 68
68
Er
167.26 | Tm 168.93 | Yb Yb 173.04 | |--------------|---------------------------|-------------------------------------|---------------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|---|--------------------------------|----------------------------|--------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------| | **actinides | Actinium 89 AC (227) | Thorium 90 Th 232.04 | Protactinium 91 Pa 231.04 | 92
92
U
238.03 | Neptunium
93
Np
(237) | Plulonium
94
Pu
(244) | Americium
95
Am
(243) | Cm (247) | Berkellum
97
BK
(247) | Californium 98
Cf (251) | Einsteinlum
99
ES
(252) | Ретіци
100
Fm
(257) | Mendelevium
101
Md
(258) | Nobelium
102
No
(259) |