National Exams December 2016

04-BS-6: Mechanics of Materials

3 hours duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
2. Candidates may use one of two calculators, the Casio or Sharp approved models.

This is a Closed Book exam. However candidates are permitted to bring the following into the examination room:

- ONE aid sheet $8.5^{\prime \prime} \times 11^{\prime \prime}$ hand-written on both sides containing notes and formulae. Example problems and solutions to problems are not allowed!

3. Any FIVE (5) questions (out of 8 given) constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.
5. Information on geometric properties of wide flange or W shape sections is attached at the end of this exam. Note that this information may not be required.

NOTE: The aid sheet must be handed in with the exam!

Your exam will not be marked if you do not hand in an aid sheet, unless there is a signed statement by the exam invigilator stating that no aid sheet was used for the exam.

Question 1: A simply supported beam supports a triangularly distributed load and a couple acting [20 marks] at the left support as shown. The beam has the cross-section given and is made of steel with a yield strength of 350 MPa and shear stress at yield of 75 MPa . The elastic modulus of the steel is 200 GPa .

Determine the SHEAR FORCE and BENDING MOMENT along the length of the beam as a function of x. In other words, find $V(x)$ and $M(x)$ for the beam.

Then draw the corresponding shear force and bending moment diagrams for the beam (label all critical points and show your work by indicating exactly how you obtained your answers).

beam cross-section (all dimensions in mm)

Question 2: A simply supported beam supports a triangularly distributed load and a couple [20 marks] acting at the left support as shown. The beam has the cross-section given and is made of steel with a yield strength of 350 MPa and shear stress at yield of 75 MPa . The elastic modulus of the steel is 200 GPa .
(a) Determine the maximum deflection using the method of integration.
(b) Determine the slope at the left support using the method of integration.
(c) Sketch the deflected shape of the beam and indicate whether the beam satisfies an allowable deflection limit of $\mathrm{L} / 120$ (where L equals the span of the beam).

Question 3: A simply supported beam supports a triangularly distributed load and a couple [20 marks] acting at the left support as shown. The beam has the cross-section given and is made of steel with a yield strength of 350 MPa and shear stress at yield of 75 MPa . The elastic modulus of the steel is 200 GPa .

Determine the following:
(a) maximum normal stress in the beam
(b) maximum shear stress in the beam
(c) shear stress at the tip of the flange (point E) at a section located 2 m from the left support. To receive marks you must give reasons to justify your answer.

Question 4: A steel plate $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ in plan and 2 mm thick is subjected to the axial and shear forces as shown. Ignore stress concentrations from the forces.
[20 marks] Use the Mohr's circle solution (not the transformation equations) to determine the following:
(a) the principal stresses and orientation of the principal planes, showing your answer on a properly oriented element.
(b) the maximum in-plane shear stress (and associated normal stresses) and orientation of the corresponding planes. Once again, show your answer on a sketch of a properly oriented element.

Careful: Mohr's circle involves stresses Not forces.
WARNING! Credit will only be given for a solution using Mohr's circle. Not the stress transformation equations. This means that you need to draw a Mohr's circle based on the stress components given in this problem. Remember to show numbers on your circle. Your calculations must be based on the geometry of your circle. So use your calculator. In other words, you are expected to use trigonometry to construct your Mohr's circle. Do not give a graphical solution that is scaled off!

The stress transformation equations can only be used to check your answer.

Question 5: A uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ is applied to a horizontal beam AB that is [20 marks] supported by a pinned connection at A and an inclined tension member at B . The beam has the cross section shown and is made of steel with a normal yield stress of 350 MPa and yield stress in shear of 60 MPa . The elastic modulus of the steel equals 200 GPa . The pinned connections at A and B are located at the centroid of the beam cross-section.
(a) Compute the distribution of normal stress in the I-beam at a section located 1 m from the support at A. Show this distribution on a sketch and make sure to show maximum and minimum values of stress.
(b) Compute the maximum shear stress in the I-beam at the same section located 1 m from the support at A.
(c) What happens when the pinned connections at A and B are not located at the centroid of the beam cross-section.

beam cross-section (all dimensions in mm)

Question 6: A stepped steel shaft with $\mathrm{G}=80 \mathrm{GPa}$ and $\tau_{y}=250 \mathrm{MPa}$ is subjected to the [20 marks] torques shown (note that one of the torques is a distributed load). Dimensions (length and diameter) are also given.
(a) Determine the maximum shear stress in the stepped shaft, and sketch the corresponding variation of shear stress along the shaft radius at this location.
(b) Determine the rotation (in degrees) at the free end of the shaft.

Question 7: A rigid L -shaped link (ABCDE) is supported by a 12 mm diameter pin at D and [20 marks] two 3 mm diameter cables at points B and C. Both cables have a length of 1000 mm and are made of steel with a yield strength of 400 MPa and elastic modulus of 200 GPa . The L-shaped link is loaded with a concentrated load at E as shown.
(a) find the forces developed in each cable
(b) find the corresponding horizontal displacement at the top of the link (point A)
(c) find the shear stress in the pin at D given that the pin is loaded in double shear.

Question 8 Determine the largest load P that can be applied to the truss structure below given [20 marks] that members $A B$ and $B C$ are made of 120 mm outside diameter hollow steel pipes with a 10 mm wall thickness. Both steel pipes are pinned at their ends.

Consider in-plane buckling only for the compression members and use a factor of safety of 2 for the Euler buckling load. Do not use a safety factor for yielding of the steel. The steel used in the rods has an allowable yield strength equal to 240 MPa and elastic modulus of 200 GPa .

Note: $\quad \mathrm{A}_{\text {circle }}=\pi \mathrm{r}^{2}$ and $\mathrm{I}_{\text {circle }}=\pi \mathrm{r}^{4} / 4$

Designation	Area A	Depth d	Web thickness t_{w}	Flange		$x-x$ axis			$y \mathrm{y}$ y x xim		
				width	thickness						
				b_{5}	\%	1	5	r	,	5	r
mmxkg/m	mm^{2}	mm	mm	mm	mm	$10 . \mathrm{mm}^{2}$	$10^{3} \mathrm{~mm}^{3}$	mm	10 mma	$10^{2} \mathrm{~mm}^{3}$	mm
W610 $\times 155$	19800	611	12.70	324.0	19.0	1290	4220	255	108	607	73.9
W610 $\times 140$	1790	617	13.10	230.0	22.2	1120	3630	250	45.1	392	502
W610 $\times 125$	1590	612	11.90	229.0	19.6	985	3220	249	34.3	3.43	40.7
13610 1103	14.400	608	11.20	228.0	17.3	875	2880	248	34.3	301	48.8
W6to $\times 100$	12900	603	10.50	228.0	14.9	764	2530	24.3	29.5	259	47.8
W610 $\times 92$	11800	603	10.90	179.0	15.0	646	2140	234	14.4	16.	34.9
Whto 882	10.500	599	10.00	178.0	12.8	560	1870	231	12.1	136	339
W460 $\times 0$	12300	466	11.40	193.0	19.0	445	1910	190	228	236	43.1
W460 $\times 89$	11.40)	463	10.50	192.0	17.7	410	1770	190	20.9	218	42.8
W460 $\times 8.2$	10400	460	9.91	191.0	16.0	370	1610	189	18.6	195	42.3
W460 1.74	9460	457	9.02	1900	14.5	337	1460	188	16.6	175	41.9
14.60×68	8730	459	9.14	1.4 .0	15.4	297	1290)	184	9.41	122	32.8
W460 $\times 60$	7590	455	8.60	153.0	13.3	255	1120	183	7.96	104	32.4
W460 $\times 52$	6640	450	7.62	152.0	10.8	212	942	179	6.34	83.4	30.9
$W 410 \times 85$	10800	417	10.90	181.0	18.2	315	151%	171	18.0	199	40.8
W410 $\times 74$	9510	413	9.65	1500	16.0	275	1330	170	156	173	40.5
W410 $\times 67$	8560	410	8.76	179.0	14.4	245	1206	169	13.8	154	40.2
W410 $\times 53$	6820	403	7.49	177.0	10.9	186	923	165	10.1	114	38.5
$W 410 \times 16$	5890	403	6.99	140.0	11.2	156	774	163	5.14	73.4	29.5
W410 $\times 39$	4960	399	6.35	140.0	8.8	126	632	159	4,02	57.4	28.5
W360 $\times 79$	10100	354	9.40	205.0	16.8	227	1280	150	24.2	236	48.9
W 360×64	8150	347	7.75	203.0	13.5	179	1090	148	18.6	18.5	48.0
W360 $\times 9$	7200	358	7.87	172.0	12.8	16%	894	149	11.1	129	34.3
W360 $\times 51$	6450	355	7.24	171.0	11.6	141	794	14	9.0s	11.3	38.7
W360 $\times 45$	5710	352	0.86	171.0	4.8	121	68%	1.46	8.16	95.4	37.8
W 360×39	4960	353	6.48	188.0	10.7	102	578	143	3.75	58.6	27.5
W360 $\times 33$.	4190	3.49	5.8 .4	127.0	8.5	82.9	475	141	3.91	458	26.4

Designation	$\begin{gathered} \text { Area } \\ \text { A } \end{gathered}$	Depth d	Web thickness $t_{\text {sk }}$	Flange		$x-x$ axis			y-yaxis		
				width b:	thickness t						
						1	5	r	1	5	'
$m m \times \mathrm{kg} / \mathrm{m}$	mm^{2}	mm	mm	mm	mm	$10^{5} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm
W310 $\times 129$	16.500	318	13.10	308.0	20.6	308	1940	137	100	6.49	77.8
W310 $\times 7.4$	9.480	316	9.40	2050	16.3	165	1060	132	23.4	228	49.7
W310 $\times 67$	8530	36	8.51	2940	14.6	1.5	948	13n	20.7	203	49.3
W310 $\times 39$	4930	310	5.84	1650	9.7	Sts	547	131	7.23	87.6	38.3
W310 $\times 3.3$	4189	13	6.60)	102.0	10.8	650	415	125	1.92	37.6	21.4
W310 $\times 24$	3040	305	5.59	101.9	(1, \%	428	2 St	119	1.16	23.0	10.5
W310 $\times 21$	2600	Wh	508	1040	5.7	376	24.	117	0086	19.5	19.2
W250 $\times 149$	19000	282	17.30	26.30	28.4	259	18.46	117	80.2	656	67.4
W250 $\times 80$	10200	256	9.40	2550	15.6	26	984	111	43.1	338	650
W250 $\times 67$	8560	257	8.89	314.0	15.7	164	*i9\%	110	222	218	50.9
W250 $\times 58$	7400	252	sum	36.0	13.5	87.3	69	104	18.8	185	50,4
W250 $\times 45$	5700	266	7.62	148.0	13.0	7.1	536	112	7.03	95	35.1
W250 228	3620	260	6.35	102.0	10.0	39.9	307	10.5	1.78	34.9	22.2
W250 $\times 22$	2850	254	5.84	102.0	6.9	28.8	227	101	1.22	23.9	207
W250 $\times 18$	2280	251	4.83	10.0	53	22.5	179	99.3	0.919	18.2	20.1
W200 $\times 100$	12700	224	14.50	2100	23.7	113	987	94.3	36.6	349	53.7
W200 $\times 86$	11000	222	13.00	209.0	20.6	94.7	8.53	92.8	31.4	300	53.4
W200 $\times 71$	9100	216	10.20	206.0	17.4	76.6	769	9.7	25.4	247	52.8
W 200×50	7580	210	9.14	205.0	14.2	61.2	583	89.9	20.4	199	51.9
W200 $\times 46$	5890	203	72.4	2030	11.0	45.5	4.48	87.9	15.3	151	51.0
W200 $\times 36$	4570	201	6.22	165.0	10.2	34.4	342	86.8	7.64	92.6	40.9
W200 $\times 22$	2860	206	6.22	1020	8.0	20.6	19.4	83.6	1.42	27.8	22.3
W150 $\times 37$	4730	162	8.13	1540	11.6	22.2	27.	68.5	7.07	91.	38.7
W150 $\times 30$	3790	153	6.60	1530	03	17.1	2 B	67.2	584	72.4	38.2
W150 $\times 22$	2860	152	58.8	1520	6.6	12.1	159	65.0	3.87	509	36.8
W150 $\times 24$	3060	160	6.60	102.0	10.3	13.4	168	66.2	1.83	35.9	24.5
W: 50×18	2290	153	5.84	1020	7.1	9.19	120	63.3	1.26	24.7	23.5
W150 $\times 14$	1730	150	4.32	10000	55	6.84	91.2	62.9	0.912	18.6	230

