National Exams December 2016
04-BS-1, Mathematics 3 hours Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme:

1. 20 marks
2. 20 marks
3. 20 marks
4. (a) 6 marks, (b) 14 marks
5. (a) 10 marks, (b) 10 marks
6. 20 marks
7. 20 marks
8. 20 marks
9. Find the general solution of the differential equation $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=(1-2 x) x^{3} e^{-2 x}$.

Note that ' denotes differentiation with respect to x.
2. Find the general solution, $x(t)$, of the differential equation $x^{\prime \prime}+4 x=3 \cos 2 t+4 \cos 3 t$.

Note that ' denotes differentiation with respect to t.
3. Find the maximum and minimum values of $f(x, y, z)=4 x+y^{2}+2 z^{2}$ over the ellipsoid $x^{2}+3 y^{2}+z^{2}=2$.
4. Let $x=\left(\begin{array}{c}2 \\ 0 \\ -1 \\ 0\end{array}\right)$ and $A=\left(\begin{array}{cccc}1 & 1 & 6 & -1 \\ -1 & 2 & -2 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 2\end{array}\right)$
(a) Show that x is an eigenvector of A and find the associated eigenvalue.
(b) Show that 3 is an eigenvalue of A and find an associated eigenvector.
5. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+2 y-3 x$, and let $g(x, y, z)=3 x+y^{2}-z^{2}$.
(a) Find an equation for the tangent plane to the surface $g(x, y, z)=9$ at the point $(3,-1,1)$.
(b) Find the line tangent to the intersection of the surfaces $f(x, y, z)=0$ and $g(x, y, z)=9$ at the point $(3,-1,1)$.
6. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d S$ where $\mathbf{F}(x, y, z)=x z \mathbf{i}-2 y \mathbf{j}+3 x \mathbf{k}$ and S is the surface of the region bounded above by the paraboloid $z=4-x^{2}-y^{2}$ and below by the plane $z=0$.
7. Find the work done by the field $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y \mathbf{j}-z \mathbf{k}$ in moving a particle from the point $(0,2,0)$ to the point $(3 \pi, 0,2)$ along the path $x=6 t, y=2 \cos t, z=2 \sin t$.
8. Evaluate the surface integral $\iint_{S} x^{2} y z d A$ where S is the portion of the cylinder $x^{2}+y^{2}=4$ with $0 \leq z \leq 4$ and $y \geq 0$.

