National Exams May 2016

07-Bld-A7, Building Envelope Design

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a CLOSED BOOK EXAM. Casio or sharp calculator allowed
- 3. FIVE (5) questions constitute a complete exam paper. The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. For questions that require an answer in essay format, clarity and organization of the answer are important.
- 6. Equations and data required for calculations are provided in the appendix of this exam booklet.

07-Bld-A7 Building Envelope Design, May 2016

Question 1 (20 marks)

1.1: (20 Marks) Decide for each statement whether it is true or false. Provide the answers directly on this question sheet.

No.	Statement	True	False
1	It is not possible to have vapor diffuse through a wall in the direction opposite to air leakage		
2	Wetting by condensation is promoted on cold indoor surfaces and on cold surfaces within the construction when moist air is in contact with surfaces with temperature above its dew point.		
3	The SHGC of window is not only influenced by the properties of glazing but also the configuration of window frame.		
4	Cold outdoor air entering through a building enclosure because of wind, exhaust fans, or stack effect will usually be at a low relative humidity but at a high humidity ratio.		
5	In any climate condition, the vapor barrier is beneficial to prevent moisture-induced damage if placed on the interior or indoor side of the wall.		
6	The suction pressure on the roof perimeter is more severe when wind blows perpendicular to the face of the building than when wind blows towards the corner of the building.		
7	The moisture accumulation in the building envelope can induce material decay and mold growth, but won't affect the thermal performance of the envelope.		
8	Asphalt impregnated building paper can be considered as an air barrier		
9	The principal function of a vapour barrier is to stop or, more accurately, to retard the passage of moisture as it diffuses through the assembly of materials in a wall, so the vapor barrier must be continuous.		
10	Air barrier must be installed on the warm side of the wall		
11	In cold climate, if the air barrier is positioned on the outside of the insulation, the air barrier material needs to be 10-20 times more permeable to water vapor diffusion than the vapor barrier material.		
12	The principal function of masonry mortar is to develop a complete, strong and durable bond with masonry units. Mortar must also create a water resistant seal.		
13	Differences in air density due to differences in temperature between indoors and outdoors give rise to stack effect, which promotes air leakage through a building enclosure and a generally downward movement of air within a building in cold weather.		

14	For safety reason it is good to use a mortar that has more compressive strength than required by the structural requirements of the project.	
15	When given a choice during renovation, insulation should be placed on the interior of the structure to achieve energy efficiency.	
16	For hygroscopic materials, their vapour permeability changes with the change of ambient relative humidity. Typically the vapour permeability increases with the decrease of relative humidity.	
17	Lack of movement joints often results in cracks in brick veneer walls, especially at corners.	
18	An air barrier can also function as water resistive barrier, vapour retarder, thermal insulation.	
19	By filling the double IGU with Argon gas can significantly increase its thermal resistance.	
20	When the water content level of brick is under its critical degree of saturation, S_{crit} , frost damage won't occur regardless of the number of freeze/thaw cycles the brick is exposed to.	

Question 2 (20 marks):

A typical wood-frame brick veneer wall construction that is commonly used in Part 9 low-rise residential building is made up of the following components:

- 100mm exterior brick (RSI 0.13)
- 25mm air space (RSI 0.22)
- one layer of Tyvek water resistive membrane, 0.2mm
- 12.5 mm plywood sheathing (RSI 0.11)
- 140mm glass fiber insulation (RSI 3.67)
- 6 mil polyethylene as vapour and air barrier
- 12.5mm gypsum board (RSI 0.08)

To improve the energy efficiency of homes, the thermal resistance of walls, roofs, and below grades will need to be significantly improved.

- Calculate the effective RSI value of the wall assembly given using the Parallel path method. The wood stud spacing is 16" at centre, and assume the thermal conductivity of the wood stud is 0.11W/m•K. The actual dimension of 2x6 wood stud is 38mm by 140mm. A frame factor of 25% can be assumed in the calculation.
- 2) Propose one wall configuration to achieve an effective thermal resistance of R40 (RSI 7.0) using the wall assembly given as the base case.
- 3) Comment on the moisture performance of your solution in comparison to the conventional 2x6 wood-frame wall given.
- 4) Sketch a typical floor/wall junction with the wall construction you have chosen. On your drawing, label and trace the air barrier, vapour barrier, water resistive barrier, and rain shedding surface.

In your calculation, you can assume a RSI 0.12 for the interior surface thermal resistance, a RSI 0.03 for the exterior surface thermal resistance, and a RSI 0.22 for the thermal resistance of rainscreen air cavity. Material properties are provided in the appendix.

Question 3 (20 marks):

Part A (16 marks)

Five meter wide, dark gray, precast concrete spandrel panels are to be used on a building with allowance made for lateral expansion and contraction. The panels are anchored at the middle point, as shown in Figure 1. This building is located in Montreal.

- What is the maximum movement this concrete panel experiences? Assume the design winter temperature is -25°C and the maximum cladding temperature is 65°C. The coefficient of linear thermal expansion and contraction of concrete is 11.7 x10⁻
 ⁶/°C.
- 2) What would be the minimum vertical joint width if a sealant with a movement capacity of ±25% is applied at the annual mean temperature.
- 3) What would be the minimum vertical joint width is a sealant with a movement capacity of ±25% is applied at 5°C.

Figure 1

- 4) Sketch the vertical joint and label all components and comment on the requirements of the relative dimensions of this joint.
- 5) Explain what sealant failures it would result if the joint is too wide or too deep
- 6) Explain the difference between single-stage joint and two-stage joint with the help of sketches, and state the advantages of two-stage joint over single-stage joint.

Part B (4 marks)

Figure below shows a typical window/wall connection detail. Explain how the rainwater is managed in this design.

Question 4 (20 marks)

Design a low-slope, exposed membrane roofing assembly for a warehouse building located in Toronto. The primary membrane is to be Modified Bitumen (SBS). This warehouse has a brick veneer steel stud wall assembly.

1) Sketch the roof/wall junction and label the main components for both the roof and the wall;

2) List the potential failures of a low-slope roof with Modified Bitumen membrane and elaborate on how to prevent these failures.

Question 5 (20 marks):

1. (**10 marks**) The deteriorated brick shown in photo A was found under the coping in photo B. The cross section of the coping is shown in photo C.

- a) Explain the cause and mechanism which led to this deterioration of the brick,
- b) Outline the deficiencies of the design detail of this coping, and
- c) Draw the cross section of an effective coping and parapet.

Photo A

Photo B

2) (5 marks) In photo shown below, note that icicles are formed at the eaves of a sloped roof. Explain what has caused it and how to avoid such a problem.

07-Bld-A7 Building Envelope Design, May 2016

3. (**5 marks**). As shown in the photo below, cracks and spalling of bricks are noted at the corner of this brick veneer wall. Explain what has potentially contributed to this failure and what should have been done to avoid such a failure.

Photo 3

Question 6 (20 marks)

Review the case study "the brick is falling". 1) Explain the failure mechanism of this case with the aid of sketch. 2) Comment on how to avoid such failures from occurring by providing a cross-section of a brick veneer wall showing the proper wall/floor connection details.

The Brick Is Falling

Although masonry construction has been around for up to 12,000 years, we occasionally need to be reminded of some basic principles of its proper use. The photo depicts a failure caused by a practice that defies common sense as well as all published works on masonry veneer construction.

The brick faces have spalled off, revealing the toe of a shelf angle at approximately midheight of the brick course. When

I first visited this eight-story university library, ropes had been strung around the building to

> prevent falling pieces of brick from striking the public.

> A shelf angle's purpose is, of course, to support the prism of masonry above. Good practice dictates that the bottom masonry course be seated di-

penetration than concave joints) and the numerous cracks and spalls in the masonry. However, the obvious problem related to the mislocated shelf angle was that there was no way for a flashing to drain out of the wall. A flashing should terminate outside the masonry, but that is impossible when it is placed at a row of soaps instead of a horizontal joint.

made about the mortar joint profiles (raked joints have significantly lower resistance to water

Sharing the Blame

Although the masonry contractor can be easily criticized for these practices, the general contractor also shares the blame for the lack of coordination between the steel and masonry, and no doubt the architect is responsible for the poor detailing of the shelf angles.

I also criticize the conventional practice, as done here, of structural engineers showing the steel shelf angles on their drawings but indicating the masonry only by a phantom line. This is an intentional abdication of any responsibility for the masonry's behavior, yet engineers are the best hope of preventing this type of failure. The structural drawings should show the steel/masoury coordination. To continue not doing so is to condemn more buildings to this type of failure. •

DAVID H. NICASTRO, P.E., is founder and president of Engineering Diagnostics. Inc., in Houston, Texas. Mr. Nicastro specializes in the investigation and remedy of construction problems and the resolution of related disputes.

Masonry courses did not line up with previously erected shelf angles. By David H. Nicastro

rectly on the steel (or rather, on a flashing material, which is also conspicuously absent in this photo). A space should be left between the shelf angle and the masonry course below it. Theoretically, a shelf angle does not take any load until it deflects; so, if it bears on solid masonry below, it passes the loads from above into the masonry below rather than back to the building frame.

In this case, the masonry courses did not line up with the previously erected steel shelf angles. Apparently, to preserve even course lines around the building, the bricks were modified to fit around the steel wherever it occurred. Called "soaps," these cut bricks were typically either Lshaped or thin, flat fronts only. In some areas, there is space below the steel (as in the photo), so the shelf angles did deflect, carrying the masonry above with them. However, the soaps were mortared in solid to the course above, and they were crushed when the weight of the deflecting masonry hore on the thin face cross section.

In addition to the masonry structural failures, the walls leaked like a sieve. Criticisms could be

Construction Specificr/june 1995

36

Appendix: equations

• Vapor flow equation:

$$W = MA\theta(p_1 - p_2) \tag{1}$$

where:

W = total mass of vapor transmitted, ng

- $M = \text{permeance coefficient, ng/(s \cdot m^2 \cdot Pa)}, M = \frac{\overline{\mu}}{l}$
- θ = time during which flow occurs, s

l =thickness, m

 $\overline{\mu}$ = average permeability, ng/(s·m·Pa)

- A = cross-section area of the flow path, m²
- $(p_1 p_2) =$ vapor pressure difference applied across the specimen, Pa.
- Conductive heat transmission equation

$$\frac{q}{A} = U(t_i - t_o)$$
(2)
where
 $q/A = \text{heat-flow rate, W/m}^2$
 $U = \text{overall coefficient of heat transmission, W/(m^2 \cdot K)}$
 $t_{I_i} t_o = \text{inside and outside temperature, K}$

• Thermal resistance of composite section

$$R = \frac{1}{U} = R_1 + R_2 + R_3 \tag{3}$$

• Average U-value by parallel method (area-weighted average) $U = \frac{A_1}{A_1 + A_2} U_1 + \frac{A_2}{A_1 + A_2} U_2$ (4)

December	Danster balan	Conductivity ^k k,	Resistance R,	Specific fleat,	D. failure 6
Electropical Finish Electrical Materials	Density, sg/m	(7/(ш-к)	(m. tyrn	Karing Kr	
Current and rebounded wethave nod 10 mm	110		0.42		NIST (2000)
Carpet and rebounded dretinine pactamentation 19 milli	110		0.12		NIST (2000)
Pile sugget and rubber pid (one-piece)	320		0.12		NIST (2000)
The carpet with theorem particular states of the first states of t	250		0.20		NIST (2000)
DISTURATION & DECEMBER OF A	402	0.10	0.04		CIDSE (2000)
PYC/Rubber floor covering in a function of the anti-	1804	0.40	0.04	- constant	NIST (2000)
Rubber dis ana anna anna anna anna anna anna 22 mil	1900	Sector 2	100	0.80	11131 (2000)
Ternazzo			0.014	0.80	
insulating Materials					
Blankel and batton	1611	8814		194	V
Glass-noer balls menonication and an and a bo 90 mm	10 10 14	0.045	******	0.04	Kumaran (2002)
La Los	81013	8 PU.U OJ CPU.U	biasing	0,84	Kumumi (2002)
Mineral liber and an and a second sec	30 16 m 48	0.030		0,84	- Kumaran (1996) - CUDST (2026) MIST (2000)
Witherfall wool, icfied and an	10 10 48	0.040		(Canadara)	CIBSE (2000), MIST (2000)
the contract of the contract o	60 to 100 60 to 100	0.033	wittiged	where we	NIST (2000) Baselenda (10%)
oldg wool construction of the second	2010 190	0.036			Razujević (1976)
() (205	0.040	-Add Stage one	Brank of	Razigevic (1970)
a di ka ka ka ka di di ka	303	0.043		***********	Raznjevic (1976)
¥ # 1 # + * 4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	330	0.048			Raznjević (1976) Duminini (1076)
n in die staat wat wat wat wat wie staat wit wat wit is staat wit wit wit wit wit wit wit wit wit wi	400	0.030	concard,	www.	Ruzijevic (1976)
Callular abox	130	0.048		0.75	(Mary fast word)
Certain gass	100	0.040		0.73	(Munundener)
with Portland coment hinder	400 to 450	0.072 60 0.076	*desered	******	
with magnesia general fide binder	250	0.082		1.30	
Glass fiber board	160	0.032 to 0.040		0.84	Kumaran (1996)
Exampled rubber (cirid)	70	0.032		1.67	Notting (1947)
Expended relevent (regularians and a femanth shin)	25 to 40	0.022 10 0.030		1.47	Kumama (1006)
Expanded polystyrene excluded (another semijaaning	15 to 25	0.032 to 0.030	Notice	1.47	Kamaman (1996)
Mineral fiberhoard wet felted	160	0.038	-	0.84	Kumaran (1996)
core or roof insulation	255 in 270	0.049	-	4.4.3	reaction and (1990)
securical tild was assumed an anoma sure and a sure	290	0.050	WORKS	0.80	
	335	0.053	www.		
wet-molded, acoustical tiles	370	0.061	Whether,	0.59	
Parlite board	160	0.052			Kumaran (1996)
Polvisocyanurate, aged					seama and essay
unfaced	25 to 35	0.020 to 0.027	\$Project	Textmat	Kumaran (2002)
with facers	65	0.019		1.47	Kumaran (1996)
Phenolic form board with facers, aged	65	0.019	Normal Action of the International Action of the Internati		Kumaran (1996)
Loose fill					
Cellulosic (milled paper or wood pulp)	35 to 30	0.039 to 0.045	W-Partners.	1.38	NIST (2000), Kamaran (1996)
Perlite, expanded.	30 to 65	0.039 to 0.045	All reports	1.09	(Manufacturer)
	65 to 120	0.045 to 0.052			(Manufacturer)
	120 to 180	0.052 to 0.061			(Mamufacturer)
Mineral fiber (rock, slag, or glass) ^d					ć
transmission and the second se	10 to 30	J 41900-0	1.92	0.71	
	10 to 30		3.33		
approx, 190 to 250 mm	10 to 30	-	3.85	emert 6	
approx. 260 to 350 mm	10 to 30	-	5.26		
	30 to 55	2000000	2.1 to 2.5	2-100002	
Vermiculite, exfoliated	110 to 130	0.068	*****	1,34	Sabine et al. (1975)
	64 to 96	0.063		* *** *	(Manufacturer)
Sprav-applied		50 B			. 7
Cellulosic fiber menerous and an annumentation	55 to 95	0.042 to 0.049			Yarbrough et al. (1987)
Glass fiber	55 to 70	0.038 to 0.039	withing	#0149544	Yarbrough et al. (1987)
Polyurethane foam (low deasity)	6 to 8	0.042		1,47	Kumaran (2002)
	40	0,026		1.47	Kumaran (2002)
uged and dry	30	pagent,	1.6	1,47	Kumaran (1996)
50 mm	55		1.92	1.47	Kumaran (1996)
	30		3.69		Kumaran (1996)
Ureaformaldehyde foam, dry	8 to 20	0.030 to 0.032			CIBSE (2006)

Table 4 Typical Thermal Properties of Common Building and Insulating Materials: Design Values* (Continued)

07-Bld-A7 Building Envelope Design, May 2016

Page 9 of 11

	Permeability at Various Relative Humidities, ng/(Pa+s+m)					Water Absorption Conflicient	Mean Air Pormasbility	Deferences
Material	10%	30%	50%	70%	90%	(kg·s [%])/m ²	kg/(Parsim)	Conthents
Building Board and Siding								••••••••••••••••••••••••••••••••••••••
Asbestos cement board, 3 mm thickness		- 0.66 to 1.3	7		N/A			Dry cup*
with oil-base finishes	·	0.05 to 0.0	9	-	N/A			• •
Cement board, 13 mm, 1130 kg/m ³	7.4	7.4	9.3	12	16	0.013	3×10-8	Kumaran (2002)
Fiber cement board, 8 mm, 1380 kg/m ³	0.21	0.58	1.6	4.7	14.8	0.025	3×10^{-12}	Kumaran (2002)
Gypsum board		21		23	30			Kumaran
asphalt impregnated			0.038			b		(1996)/NRC
Gypsum wall board, 13 mm, 625 kg/m ³	23,4	27.2	31.9	37.6	44,7	0.0019*	4.2×10^{-9}	Kumaran (2002)
with one cost primer	6.83	14.9	22.0	28.9	35.9	N/A	2.2×10^{-8}	Kumaran (2002)
with one coat primer/two coats latex paint	1.1	2.1	4,0	8,0	16.5	N/A	2.5×10^{-9}	Kumaran (2002)
Hardboard siding, 11 mm, 740 kg/m ³	3.92	4.28	4.67	5.10	5.58	0.00072	4.5×10^{-9}	Kumaran (2002)
Oriented strand board (OSB), 9.5 mm, 660 kg/m ⁴	0.0064	0.177	0.487	1.35	3.83	0.0016	1×10^{-9}	Kumaran (2002)
ll.1 mm	0.026	0.60	1.23	2.30	4.08	0.0022	2×10^{-9}	Kumaran (2002)
12.7 mm	0.044	0.344	0.90	1.70	2.75	0.0016	1 × 10-9	Kumaran (2002)
Particleboard	0.10	4,4	6.0	10.2	15.2	n oo iad	1	Kumaran (1996)
Douglas fir plywood, 12 mm, 470 kg/m ³	0.19	0.59	1.40	3,19	6.30	0.00424	4 × 10-0	Kumaran (2002)
15 mm, 550 kg/m ²	0.15	0.41	1,09	2.91 6.10	1.99	0.0031	1 × 10-11	Kumaran (2002)
Canadian softwood plywood, 18 mm, 445 kg/m ²	0.06	0.57	2.28	0.12	13.30	0.0037	2 x 10-11	Rumaran (2002)
Plywood (exterior-grade), 12 mm, 580 kg/m ²	0.21	0.36	160	0.80	8.02 18.1	0.00004	35-107	Burch et al.
25 mm 200 kg/m ²	1271	13.0 60.4	15.0	10,4	10.1	0.00094	2.3 × 10-7	Rumaran (2002)
25 mm, 500 kg/m ²	11.2	20.4		60, <i>1</i>	11.4			Deciarlaie
								(1995)
Masonry Materials								a inclusion and a second
Acrated concrete, 460 kg/m ³	11.2	15.9	22.9	33.4	50	0.036	5 × 10-9	Kumaran (2002)
600 kg/m ³	18	21.6	22	42	63			Kumaran (1996)
Cement mortur, 1600 kg/m ³	13.6	16.5	20.1	24.5	30.2	0.02	1.5×10^{-9}	Kumaran (2002)
Clay brick, 100 by 100 by 200 mm, 1980 kg/m ³	4.14	4.44	4.77	5.12	5.50	0.17	2 to 5 × 10-10	Kumaran (2002)
Concrete, 2200 kg/m ³		1.26	1.4	2.5	6.5			Kumaran (1996)
Concrete block (cored, limestone aggregate), 200 mm	-		27,4			•		
Lightweight concrete, 1100 kg/m3		12.3		11.4	18.7			Kumurun (1996)
Limestone, 2500 kg/m ³	0.26	0.26	0.26	0.26	0.26	0.00033	negligible	Kumaran (2002)
Perlite board		28		33	82			Kumaran (1996)
Plaster, on metal lath, 19 mm	-		16.3					
on wood lath			12.0	-				
on plain gypsum lath (with studs)			21.7			,		
Polystyrene concrete, 530 kg/m ³		0.88		1.1	2.7			Kumaran (1996)
Portland stuceo mix, 1985 kg/m ³	0.81	1,15	1.63	2.31	3.26	0.012	1 × 10-11	Kumaran (2002)
life masoury, glazed, 100 mm			0.69		÷			
Woods Eastern white cedar, 20 mm, 360 kg/m ³	0.013	0.078	0.48	3.05	20.9	0.0016	negligible	Kumaran (2002)
(transverse)	0.17	a 17	0.07	A 70	10.0	A 8622	1 10 13	
Eastern white pine, 19 mm, 460 kg/m² (transverse)	0.47	0.17	0.67	2.58	10.2	0.000.0	1 × 10-12	Kumaran (2002)
Fine	0.35	0.51	1,1	<i>३</i> ,। ४ रा	6.3	0.0011	1 16 11	Kumaran (1996)
(transverse)	0.12	0.404	<i>ا</i> دا دە	4.7	10.9	0.0014	3 × 10-44	Kumaran (2002)
Spruce (longitudinal)	33	74	84	86	87		4 1.0.11	Kumaran (1996)
20 mm, 400 kg/m² (transverse)	0.37	1.08	3.13	9.27	29.5	0.002	5 × 10-11	Kumaran (2002)
western red cedar, 18 mm, 350 kg/m ² (transverse)	0.106	0.228	0.491	1.00	2.29	0.001	<1 × 10-12	Kumaran (2002)
Insulation								
	-		1/4					
Collular glass	d	5 5/5	0.0	1/0	120		50 10 I	17 (AB6A)
Certainee insulation, dry blown, 30 kg/m ⁴	112	140	120	168	178	0,1	2.9 × 10-4	Kumaran (2002)
Concounted Class Charabett 11 & balan ³	175	3.0 to 3.8	179	14	195	K1/ 4	98	V
Chass fact with LLD Kym" Olive-Sheet involution broad 24 miles 120 hours 1	114	174	114	172	160	IVA	2.3 × 10-4	Rumaran (2002)
facer 1.6 mm 880 kg/m ³	0.004	420 0.00251		0.0194	1.72 0.0390			Durak at al
Mineral fiber insulation, 30 to 190 ke/m ³	57.0524	76		88	250			Kumaran (1006)
Mineral wool (unprotected)		. •	245	~~				

Table 8 Water Vapor Permeability of Building Materials at Various Relative Humidities

07-Bld-A7 Building Envelope Design, May 2016

Page 10 of 11

	Permeability at Various Relative Humidities, ng/(Pa*s•m)					Water Absorption Coefficient	Mean Air Permesbility	Deferences
Material	10%	30%	50%	70%	90%	(kg·s ^{1/})/m ²	kg/(Pa·s·m)	Comments
Phenolic foam (covening removed)			38			-		
Polystyrene								
expanded, 14.8 kg/m ³	2.85	3.36	3.96	4.66	5.50	N/A	1.1×10^{-8}	Kumaran (2002)
extruded, 28.6 kg/m ³	1.22	1.22	1.2.2	1.22	1.22	N/A		Kumaran (2002)
Polyurethane								
expanded board stock $[(R = 1.94 \text{ W}/(\text{m}^2 \text{ K})]$		0.58 to 2.3						
sprayed foam, 39.0 kg/m ³	2.34	2.54	2.75	2.97	3.22	N/A	1 × 10-11	Kumaran (2002)
6.5 to 8.5 kg/m ³	87.5	87.5	87.5	87.5	87.5	N/A	4.2×10^{-9}	Kumaran (2002)
Polyisocyanurate insulation, 26.5 kg/m ³	4.04	4.56	5.14	5.80	6.55	N/A		Kumaran (2002)
Polyisocyanurate glass-mat facer, 0.8 mm, 430 kg/m ³	0.49	0.90		1.30	2.29			Burch et al.
Structural insulating board, sheathing quality			29 to 73					
interior, uncoated, 13 mm			37.2 to 6	7		-		
Uniœllular synthetic flexible rubber foam		0.029						
Foil, Felt, Paper								
Bituminous paper (#15 felt), 0.72 mm, 515 g/m ² (transverse)	0.29	0.29	0.29	0.40	1.17	0.0005	2.5 × 10-6	Kumaran (2002)
Asphalt-impregnated paper								
10 min rating, 0.2 mm, 170 g/m ² (transverse)	0.24	0.43	0.78	1.48	3.06	0.001	1.1×10^{-6}	Kumaran (2002)
30 min rating, 0.22 mm, 200 g/m ² (transverse)	0.44	0.74	1.28	2.31	4.67	0.093	6.6 × 10-6	Kumaran (2002)
60 min rating, 0.34 mm, 280 g/m ² (transverse)	1.51	1.91	2.44	3,18	4.24	0.0011	7.1 × 10-6	Kumaran (2002)
Spun bonded polyolefin (SBPO) 0.14 to 0.15 mm, 65 g/m ² (transverse)	4.37	4.37	4.37	4.37	4.37	0.00031	4.6 × 10-7	Kumaran (2002)
with criakled surface, 0.1 to 0.11 mm, 67 g/m ² (transverse)	3.17	3.17	3.17	3.17	3.17	0.00024	3 × 10-7	Kumaran (2002)
Wallpaper								
paper		0.12		1.2 to 1.7				Kumaran (1996)
textile		0.05		0.74 to 2.34				Kumaran (1996)
vinyl, 0.205 mm, 170 g/m ² (transverse)	0.08	0.14	0.21	0.32	0.46	0.00025	5 × 10-9	Kumaran (2002)
Other Construction Materials								
Built-up roofing (hot-mopped)			0.0	6		-		
Exterior insulated finish system (EIFS), 4.4 mm acrylic, 1140 kg/m ³	0.09	0.09	0.09	0.09	0.09	0.00053	0	Kumaran (2002)
Glass fiber reinforced sheet, acrylic, 1.4 mm			0.01			-		
polyester, 1.2 mm			0.035			-		
ATTING THE ALL ALL AND					1/4 Mat	analiachta		

Table 8	Water Vapor Permeability of Building Materials at Various Relative Humidities (Continued)

*Historical data, no reference available

N/A - Not applicable

07-Bld-A7 Building Envelope Design, May 2016

Page 11 of 11